Citation: | ZHANG Meng, LI Xiang, ZHANG Jingwei. Design of Rotation Invariant Model Based on Image Offset Angle and Multibranch Convolutional Neural Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240417 |
[1] |
MO Hanlin and ZHAO Guoying. RIC-CNN: Rotation-invariant coordinate convolutional neural network[J]. Pattern Recognition, 2024, 146: 109994. doi: 10.1016/j.patcog.2023.109994.
|
[2] |
ZHU Tianyu, FERENCZI B, PURKAIT P, et al. Knowledge combination to learn rotated detection without rotated annotation[C]. Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 15518–15527. doi: 10.1109/CVPR52729.2023.01489.
|
[3] |
HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2785–2794. doi: 10.1109/CVPR46437.2021.00281.
|
[4] |
LI Feiran, FUJIWARA K, OKURA F, et al. A closer look at rotation-invariant deep point cloud analysis[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 16198–16207. doi: 10.1109/ICCV48922.2021.01591.
|
[5] |
MARCOS D, VOLPI M, KOMODAKIS N, et al. Rotation equivariant vector field networks[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5058–5067. doi: 10.1109/ICCV.2017.540.
|
[6] |
EDIXHOVEN T, LENGYEL A, and VAN GEMERT J C. Using and abusing equivariance[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision Workshops, Paris, France, 2023: 119–128. doi: 10.1109/ICCVW60793.2023.00019.
|
[7] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
|
[8] |
JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2017–2025.
|
[9] |
LAPTEV D, SAVINOV N, BUHMANN J M, et al. TI-POOLING: Transformation-invariant pooling for feature learning in convolutional neural networks[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 289–297. doi: 10.1109/CVPR.2016.38.
|
[10] |
ZHOU Yanzhao, YE Qixiang, QIU Qiang, et al. Oriented response networks[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4961–4970. doi: 10.1109/CVPR.2017.527.
|
[11] |
WORRALL D E, GARBIN S J, TURMUKHAMBETOV D, et al. Harmonic networks: Deep translation and rotation equivariance[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7168–7177. doi: 10.1109/CVPR.2017.758.
|
[12] |
WEILER M, HAMPRECHT F A, and STORATH M. Learning steerable filters for rotation equivariant CNNs[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 849–858. doi: 10.1109/CVPR.2018.00095.
|
[13] |
FIRAT H. Classification of microscopic peripheral blood cell images using multibranch lightweight CNN-based model[J]. Neural Computing and Applications, 2024, 36(4): 1599–1620. doi: 10.1007/s00521-023-09158-9.
|
[14] |
WEI Xuan, SU Shixiang, WEI Yun, et al. Rotational convolution: Rethinking convolution for downside fisheye images[J]. IEEE Transactions on Image Processing, 2023, 32: 4355–4364. doi: 10.1109/TIP.2023.3298475.
|
[15] |
COHEN T S, GEIGER M, KOEHLER J, et al. Spherical CNNs[C]. Proceedings of the Sixth International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[16] |
WEILER M and CESA G. General e(2)-equivariant steerable cnns[J]. Advances in Neural Information Processing Systems, 2019, 32. (查阅网上资料, 未找到本条文献信息, 请确认) .
|
[17] |
CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119–132. doi: 10.1016/j.isprsjprs.2014.10.002.
|
[18] |
WU Zhize, WAN Shouhong, WANG Xiaofeng, et al. A benchmark data set for aircraft type recognition from remote sensing images[J]. Applied Soft Computing, 2020, 89: 106132. doi: 10.1016/j.asoc.2020.106132.
|
[19] |
XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945.
|
[20] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|