Advanced Search
Turn off MathJax
Article Contents
ZHANG Meng, LI Xiang, ZHANG Jingwei. Design of Rotation Invariant Model Based on Image Offset Angle and Multibranch Convolutional Neural Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240417
Citation: ZHANG Meng, LI Xiang, ZHANG Jingwei. Design of Rotation Invariant Model Based on Image Offset Angle and Multibranch Convolutional Neural Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240417

Design of Rotation Invariant Model Based on Image Offset Angle and Multibranch Convolutional Neural Networks

doi: 10.11999/JEIT240417
Funds:  Key-Area Research and Development Program of Guangdong Province (2021B1101270006)
  • Received Date: 2024-05-29
  • Rev Recd Date: 2024-11-11
  • Available Online: 2024-11-18
  • Convolutional Neural Networks (CNNs) exhibit translation invariance but lack rotation invariance. In recent years, rotating encoding for CNNs becomes a mainstream approach to address this issue, but it requires a significant number of parameters and computational resources. Given that images are the primary focus of computer vision, a model called Offset Angle and Multibranch CNN (OAMC) is proposed to achieve rotation invariance. Firstly, the model detect the offset angle of the input image and rotate it back accordingly. Secondly, feed the rotated image into a multibranch CNN with no rotation encoding. Finally, Response module is used to output the optimal branch as the final prediction of the model. Notably, with a minimal parameter count of 8k, the model achieves a best classification accuracy of 96.98% on the rotated handwritten numbers dataset. Furthermore, compared to previous research on remote sensing datasets, the model achieves up to 8% improvement in accuracy using only one-third of the parameters of existing models.
  • loading
  • [1]
    MO Hanlin and ZHAO Guoying. RIC-CNN: Rotation-invariant coordinate convolutional neural network[J]. Pattern Recognition, 2024, 146: 109994. doi: 10.1016/j.patcog.2023.109994.
    [2]
    ZHU Tianyu, FERENCZI B, PURKAIT P, et al. Knowledge combination to learn rotated detection without rotated annotation[C]. Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 15518–15527. doi: 10.1109/CVPR52729.2023.01489.
    [3]
    HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2785–2794. doi: 10.1109/CVPR46437.2021.00281.
    [4]
    LI Feiran, FUJIWARA K, OKURA F, et al. A closer look at rotation-invariant deep point cloud analysis[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 16198–16207. doi: 10.1109/ICCV48922.2021.01591.
    [5]
    MARCOS D, VOLPI M, KOMODAKIS N, et al. Rotation equivariant vector field networks[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5058–5067. doi: 10.1109/ICCV.2017.540.
    [6]
    EDIXHOVEN T, LENGYEL A, and VAN GEMERT J C. Using and abusing equivariance[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision Workshops, Paris, France, 2023: 119–128. doi: 10.1109/ICCVW60793.2023.00019.
    [7]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
    [8]
    JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2017–2025.
    [9]
    LAPTEV D, SAVINOV N, BUHMANN J M, et al. TI-POOLING: Transformation-invariant pooling for feature learning in convolutional neural networks[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 289–297. doi: 10.1109/CVPR.2016.38.
    [10]
    ZHOU Yanzhao, YE Qixiang, QIU Qiang, et al. Oriented response networks[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4961–4970. doi: 10.1109/CVPR.2017.527.
    [11]
    WORRALL D E, GARBIN S J, TURMUKHAMBETOV D, et al. Harmonic networks: Deep translation and rotation equivariance[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7168–7177. doi: 10.1109/CVPR.2017.758.
    [12]
    WEILER M, HAMPRECHT F A, and STORATH M. Learning steerable filters for rotation equivariant CNNs[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 849–858. doi: 10.1109/CVPR.2018.00095.
    [13]
    FIRAT H. Classification of microscopic peripheral blood cell images using multibranch lightweight CNN-based model[J]. Neural Computing and Applications, 2024, 36(4): 1599–1620. doi: 10.1007/s00521-023-09158-9.
    [14]
    WEI Xuan, SU Shixiang, WEI Yun, et al. Rotational convolution: Rethinking convolution for downside fisheye images[J]. IEEE Transactions on Image Processing, 2023, 32: 4355–4364. doi: 10.1109/TIP.2023.3298475.
    [15]
    COHEN T S, GEIGER M, KOEHLER J, et al. Spherical CNNs[C]. Proceedings of the Sixth International Conference on Learning Representations, Vancouver, Canada, 2018.
    [16]
    WEILER M and CESA G. General e(2)-equivariant steerable cnns[J]. Advances in Neural Information Processing Systems, 2019, 32. (查阅网上资料, 未找到本条文献信息, 请确认) .
    [17]
    CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119–132. doi: 10.1016/j.isprsjprs.2014.10.002.
    [18]
    WU Zhize, WAN Shouhong, WANG Xiaofeng, et al. A benchmark data set for aircraft type recognition from remote sensing images[J]. Applied Soft Computing, 2020, 89: 106132. doi: 10.1016/j.asoc.2020.106132.
    [19]
    XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945.
    [20]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (13) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return