| Citation: | HUANG Xiaoge, LI Chunlei, LI Wenjing, LIANG Chengchao, CHEN Qianbin. An Intelligent Driving Strategy Optimization Algorithm Assisted by Direct Acyclic Graph Blockchain and Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4363-4372. doi: 10.11999/JEIT240407 | 
 
	                | [1] | XU Wenchao, ZHOU Haibo, CHENG Nan, et al. Internet of vehicles in big data era[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1): 19–35. doi:  10.1109/JAS.2017.7510736. | 
| [2] | TENG Siyu, HU Xuemin, DENG Peng, et al. Motion planning for autonomous driving: The state of the art and future perspectives[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(6): 3692–3711. doi:  10.1109/TIV.2023.3274536. | 
| [3] | LI Guofa, QIU Yifan, YANG Yifan, et al. Lane change strategies for autonomous vehicles: A deep reinforcement learning approach based on transformer[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(3): 2197–2211. doi:  10.1109/TIV.2022.3227921. | 
| [4] | ZHU Zhuangdi, LIN Kaixiang, JAIN A K, et al. Transfer learning in deep reinforcement learning: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13344–13362. doi:  10.1109/TPAMI.2023.3292075. | 
| [5] | WU Jingda, HUANG Zhiyu, HUANG Wenhui, et al. Prioritized experience-based reinforcement learning with human guidance for autonomous driving[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 855–869. doi:  10.1109/TNNLS.2022.3177685. | 
| [6] | CHEN Junlong, KANG Jiawen, XU Minrui, et al. Multiagent deep reinforcement learning for dynamic avatar migration in AIoT-Enabled vehicular metaverses with trajectory prediction[J]. IEEE Internet of Things Journal, 2024, 11(1): 70–83. doi:  10.1109/JIOT.2023.3296075. | 
| [7] | ZOU Guangyuan, HE Ying, YU F R,    et al. Multi-constraint deep reinforcement learning for smooth action control[C]. The 31st International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 3802–3808. doi:  10.24963/ijcai.2022/528. | 
| [8] | HUANG Xiaoge, WU Yuhang, LIANG Chengchao, et al. Distance-aware hierarchical federated learning in blockchain-enabled edge computing network[J]. IEEE Internet of Things Journal, 2023, 10(21): 19163–19176. doi:  10.1109/JIOT.2023.3279983. | 
| [9] | CAO Bin, WANG Zixin, ZHANG Long, et al. Blockchain systems, technologies, and applications: A methodology perspective[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 353–385. doi:  10.1109/COMST.2022.3204702. | 
| [10] | HUANG Xiaoge, YIN Hongbo, CHEN Qianbin,    et al. DAG-based swarm learning: A secure asynchronous learning framework for internet of vehicles[J]. Digital Communications and Networks, 2023. doi:  10.1016/j.dcan.2023.10.004. | 
| [11] | XIA Le, SUN Yao, SWASH R, et al. Smart and secure CAV networks empowered by AI-enabled blockchain: The next frontier for intelligent safe driving assessment[J]. IEEE Network, 2022, 36(1): 197–204. doi:  10.1109/MNET.101.2100387. | 
| [12] | FU Yuchuan, LI Changle, YU F R, et al. An autonomous lane-changing system with knowledge accumulation and transfer assisted by vehicular blockchain[J]. IEEE Internet of Things Journal, 2020, 7(11): 11123–11136. doi:  10.1109/JIOT.2020.2994975. | 
| [13] | FAN Bo, DONG Yiwei, LI Tongfei, et al. Blockchain-FRL for vehicular lane changing: Toward traffic, data, and training safety[J]. IEEE Internet of Things Journal, 2023, 10(24): 22153–22164. doi:  10.1109/JIOT.2023.3303918. | 
| [14] | YIN Hongbo, HUANG Xiaoge, WU Yuhang, et al. Multi-region asynchronous swarm learning for data sharing in large-scale internet of vehicles[J]. IEEE Communications Letters, 2023, 27(11): 2978–2982. doi:  10.1109/LCOMM.2023.3314662. | 
| [15] | CAO Mingrui, ZHANG Long, and CAO Bin. Toward on-device federated learning: A direct acyclic graph-based blockchain approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 2028–2042. doi:  10.1109/TNNLS.2021.3105810. | 
