Citation: | XU Zhan, ZHANG Xu, YANG Xiaolong. Two-stage Long-correlation Signal Acquisition Method for Through-the-earth Communication of the Ground Electrode Current Field[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4504-4512. doi: 10.11999/JEIT240399 |
[1] |
MA Honglei, LIU Erwu, WANG Rui, et al. Antenna optimization for decode-and-forward relay in magnetic induction communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3449–3453. doi: 10.1109/TVT.2019.2963357.
|
[2] |
JULTHOCHAI S, KHAMSALEE P, and WONGSAN R. An experimental study of performance enhancement of medium-frequency small loop antennas for through-the-earth at 350 kHz[C]. 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Phanom, Thailand, 2023: 1–4. doi: 10.1109/ECTI-CON58255.2023.10153298.
|
[3] |
ZHOU Chenming, SNYDER D P, EPSTEIN B, et al. Measurement of ambient magnetic field noise for through-the-earth (TTE) communications and historical comparisons[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(3): 720–727. doi: 10.1109/TEMC.2024.3354735.
|
[4] |
DAMIANO N W, YAN Lincan, WHISNER B, et al. Simulation and measurement of through-the-earth, extremely low-frequency signals using copper-clad steel ground rods[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 5088–5095. doi: 10.1109/TIA.2017.2703625.
|
[5] |
WU Lipeng, ZHANG Wenwei, SONG Xianjin, et al. Research on electromagnetic field characteristics of rotating-magnet based mechanical antenna through the earth[J]. International Journal of Applied Electromagnetics and Mechanics, 2024, 72(2): 123–139. doi: 10.3233/JAE-230080.
|
[6] |
PRUEKCHATSIRI C, JANTAUPALEE A, KHAMSALEE P, et al. An experimental study of electrodes for through-the-earth 350 kHz MF Communication[C]. 2023 IEEE International Symposium On Antennas And Propagation (ISAP), Kuala Lumpur, Malaysia, 2023: 1–2. doi: 10.1109/ISAP57493.2023.10389116.
|
[7] |
ZHOU Chenming, SYNDER D P, EPSTEIN B, et al. Magnetic field noise in the ultra-low frequency (ULF) band and historical comparisons[C]. 2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Spokane, USA, 2022: 439–442. doi: 10.1109/EMCSI39492.2022.9889418.
|
[8] |
CHAVES B P and BRAGA A J. An analytical propagation model based on dyadic green’s functions for TTE communications in an arbitrary stratified soil[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 11240–11245. doi: 10.1109/TAP.2022.3184524.
|
[9] |
龚永俭, 张长轩, 程立康, 等. 地电场环境干扰跟踪分析关键问题研究[J]. 高原地震, 2020, 32(1): 26–38. doi: 10.3969/j.issn.1005-586X.2020.01.005.
GONG Yongjian, ZHANG Changxuan, CHENG Likang, et al. Study on key problems of tracking analysis of the geoelectric field environmental interference[J]. Plateau Earthquake Research, 2020, 32(1): 26–38. doi: 10.3969/j.issn.1005-586X.2020.01.005.
|
[10] |
JANTAUPALEE A, KHAMSALEE P, and WONGSAN R. Low-frequency wave propagation in the cave[C]. 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Phanom, Thailand, 2023: 1–4. doi: 10.1109/ECTI-CON58255.2023.10153170.
|
[11] |
杨天绘. 基于电流场传播的矿井透地通信系统研究[D]. [硕士论文], 西安电子科技大学, 2017.
YANG Tianhui. Research on through-the-earth communication system for mines based on current field propagation[D]. [Master dissertation], Xidian University, 2017.
|
[12] |
YANG Liu, ZHANG Hang, CAI Yang, et al. Blind carrier frequency offset estimation for MIMO-OFDM systems based on the banded structure of covariance matrices for constant modulus signals[J]. IEEE Access, 2018, 6: 51804–51813. doi: 10.1109/ACCESS.2018.2870278.
|
[13] |
侯文壮. 地下防空洞无线透地通信系统设计与实现[D]. [硕士论文], 哈尔滨工程大学, 2023.
HOU Wenzhuang. Design and implementation of wireless through-the-earth communication system for underground air raid shelters[D]. [Master dissertation], Harbin Engineering University, 2023.
|
[14] |
ZHANG Gan, XU Zhan, CHEN Jinhui, et al. OFDM signal design based on electrode-based through-the-earth communication[C]. 2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), London, UK, 2021: 40–45. doi: 10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00021.
|
[15] |
JANTAUPALEE A, WONGSAN R, KHAMSALEE P, et al. A study of radio wave propagation in the cave for developing the through-the-earth application[J]. GEOMATE Journal, 2024, 26(118): 74–86.
|
[16] |
王菊凤, 张宇, 黄徐瑞晗, 等. 对相对频率偏差的探讨与思考[J]. 计量与测试技术, 2022, 49(9): 1–3. doi: 10.15988/j.cnki.1004-6941.2022.9.001.
WANG Jufeng, ZHANG Yu, HUANG Xuruihan, et al. Discussion and reflection on relative frequency offset[J]. Metrology & Measurement Technique, 2022, 49(9): 1–3. doi: 10.15988/j.cnki.1004-6941.2022.9.001.
|