Citation: | ZHOU Shiqi, WANG Junfan, LAI Junsheng, YUAN Yujie, DONG Zhekang. Multi-view Adaptive Probabilistic Load Forecasting Combing Bayesian Autoformer Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240398 |
[1] |
LAI C S, YANG Yuxiang, PAN Keda, et al. Multi-view neural network ensemble for short and mid-term load forecasting[J]. IEEE Transactions on Power Systems, 2021, 36(4): 2992–3003. doi: 10.1109/TPWRS.2020.3042389.
|
[2] |
KIM N, PARK H, LEE J, et al. Short-term electrical load forecasting with multidimensional feature extraction[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2999–3013. doi: 10.1109/TSG.2022.3158387.
|
[3] |
LI Jian, DENG Daiyu, ZHAO Junbo, et al. A novel hybrid short-term load forecasting method of smart grid using MLR and LSTM neural network[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2443–2452. doi: 10.1109/TII.2020.3000184.
|
[4] |
DANG Sanlei, PENG Long, ZHAO Jingming, et al. A quantile regression random forest-based short-term load probabilistic forecasting method[J]. Energies, 2022, 15(2): 663. doi: 10.3390/en15020663.
|
[5] |
王俊帆, 陈毅, 高明煜, 等. 智能交通感知新范式: 面向元宇宙的交通标志检测架构[J]. 电子与信息学报, 2024, 46(3): 777–789. doi: 10.11999/JEIT230357.
WANG Junfan, CHEN Yi, GAO Mingyu, et al. A new paradigm for intelligent traffic perception: A traffic sign detection architecture for the metaverse[J]. Journal of Electronics and Information Technology, 2024, 46(3): 777–789. doi: 10.11999/JEIT230357.
|
[6] |
WANG Bingzhi, MAZHARI M, and CHUNG C Y. A novel hybrid method for short-term probabilistic load forecasting in distribution networks[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3650–3661. doi: 10.1109/TSG.2022.3171499.
|
[7] |
ZHANG Dongxue, WANG Shuai, LIANG Yuqiu, et al. A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer[J]. Energy, 2023, 264: 126172. doi: 10.1016/j.energy.2022.126172.
|
[8] |
WANG Yi, GAN Dahua, SUN Mingyang, et al. Probabilistic individual load forecasting using pinball loss guided LSTM[J]. Applied Energy, 2019, 235: 10–20. doi: 10.1016/j.apenergy.2018.10.078.
|
[9] |
LUO Long, DONG Jizhe, KONG Weizhe, et al. Short-term probabilistic load forecasting using quantile regression neural network with accumulated hidden layer connection structure[J]. IEEE Transactions on Industrial Informatics, 2024, 20(4): 5818–5828. doi: 10.1109/TII.2023.3341242.
|
[10] |
FAUSTINE A and PEREIRA L. FPSeq2Q: Fully parameterized sequence to quantile regression for net-load forecasting with uncertainty estimates[J]. IEEE Transactions on Smart Grid, 2022, 13(3): 2440–2451. doi: 10.1109/TSG.2022.3148699.
|
[11] |
LEMOS-VINASCO J, BACHER P, and MØLLER J K. Probabilistic load forecasting considering temporal correlation: Online models for the prediction of households’ electrical load[J]. Applied Energy, 2021, 303: 117594. doi: 10.1016/j.apenergy.2021.117594.
|
[12] |
BRACALE A, CARAMIA P, DE FALCO P, et al. Multivariate quantile regression for short-term probabilistic load forecasting[J]. IEEE Transactions on Power Systems, 2020, 35(1): 628–638. doi: 10.1109/TPWRS.2019.2924224.
|
[13] |
ÁLVAREZ V, MAZUELAS S, and LOZANO J A. Probabilistic load forecasting based on adaptive online learning[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3668–3680. doi: 10.1109/TPWRS.2021.3050837.
|
[14] |
YU Binbin, LI Jianjing, LIU Che, et al. A novel short-term electrical load forecasting framework with intelligent feature engineering[J]. Applied Energy, 2022, 327: 120089. doi: 10.1016/j.apenergy.2022.120089.
|
[15] |
BRUSAFERRI A, MATTEUCCI M, SPINELLI S, et al. Probabilistic electric load forecasting through Bayesian mixture density networks[J]. Applied Energy, 2022, 309: 118341. doi: 10.1016/j.apenergy.2021.118341.
|
[16] |
ISO NEW England[EB/OL]. https://www.iso-ne.com, 2024.
|
[17] |
Metabolism[OL]. https://cm.asu.edu, 2023.
|
[18] |
ANAO[OL]. https://www.anao.gov.au/work/performance-audit, 2023.
|
[19] |
FEKRI M N, PATEL H, GROLINGER K, et al. Deep learning for load forecasting with smart meter data: Online adaptive recurrent neural network[J]. Applied Energy, 2021, 282: 116177. doi: 10.1016/j.apenergy.2020.116177.
|
[20] |
FAN Guofeng, PENG Liling, and HONG W C. Short-term load forecasting based on empirical wavelet transform and random forest[J]. Electrical Engineering, 2022, 104(6): 4433–4449. doi: 10.1007/s00202-022-01628-y.
|
[21] |
董哲康, 钱智凯, 周广东, 等. 基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J]. 电子与信息学报, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.
DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, et al. Memory circuit design, implementation and analysis based on Memristor full-function Pavlov associative[J]. Journal of Electronics and Information Technology, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.
|
[22] |
CHEN Minghao, PENG Houwen, FU Jianlong, et al. AutoFormer: Searching transformers for visual recognition[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 12270–12280. doi: 10.1109/ICCV48922.2021.01205.
|
[23] |
CAO Defu, WANG Yujing, DUAN Juanyong, et al. Spectral temporal graph neural network for multivariate time-series forecasting[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1491.
|
[24] |
LI Lei, XUE Zhigang, and DU Xiuquan. ASCRB: Multi-view based attentional feature selection for CircRNA-binding site prediction[J]. Computers in Biology and Medicine, 2023, 162: 107077. doi: 10.1016/j.compbiomed.2023.107077.
|