Citation: | HAN Yulan, CUI Yujie, LUO Yihong, LAN Chaofeng. Frequency Separation Generative Adversarial Super-resolution Network Based on Dense Residual and Quality Assessment[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240388 |
[1] |
蔡文郁, 张美燕, 吴岩, 等. 基于循环生成对抗网络的超分辨率重建算法研究[J]. 电子与信息学报, 2022, 44(1): 178–186. doi: 10.11999/JEIT201046.
CAI Wenyu, ZHANG Meiyan, WU Yan, et al. Research on cyclic generation countermeasure network based super-resolution image reconstruction algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(1): 178–186. doi: 10.11999/JEIT201046.
|
[2] |
ZHOU Chaowei and XIONG Aimin. Fast image super-resolution using particle swarm optimization-based convolutional neural networks[J]. Sensors, 2023, 23(4): 1923. doi: 10.3390/s23041923.
|
[3] |
WU Zhijian, LIU Wenhui, LI Jun, et al. SFHN: Spatial-frequency domain hybrid network for image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6459–6473. doi: 10.1109/TCSVT.2023.3271131.
|
[4] |
程德强, 袁航, 钱建生, 等. 基于深层特征差异性网络的图像超分辨率算法[J]. 电子与信息学报, 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230179.
CHENG Deqiang, YUAN Hang, QIAN Jiansheng, et al. Image super-resolution algorithms based on deep feature differentiation network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230179.
|
[5] |
SAHARIA C, HO J, CHAN W, et al. Image super-resolution via iterative refinement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4713–4726. doi: 10.1109/TPAMI.2022.3204461.
|
[6] |
DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 184–199. doi: 10.1007/978-3-319-10593-2_13.
|
[7] |
KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016. doi: 10.1109/CVPR.2016.182.
|
[8] |
TONG Tong, LI Gen, LIU Xiejie, et al. Image super-resolution using dense skip connections[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4809–4817. doi: 10.1109/ICCV.2017.514.
|
[9] |
LAN Rushi, SUN Long, LIU Zhenbing, et al. MADNet: A fast and lightweight network for single-image super resolution[J]. IEEE Transactions on Cybernetics, 2021, 51(3): 1443–1453. doi: 10.1109/TCYB.2020.2970104.
|
[10] |
WEI Pengxu, XIE Ziwei, LU Hannan, et al. Component divide-and-conquer for real-world image super-resolution[C]. Proceedings of the 16th Europe Conference on Computer Vision, Glasgow, UK, 2020: 101–117. doi: 10.1007/978-3-030-58598-3_7.
|
[11] |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 105–114. doi: 10.1109/CVPR.2017.19.
|
[12] |
WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. Proceedings of the European Conference on Computer Vision, Munich, Germany, 2019: 63–79. doi: 10.1007/978-3-030-11021-5_5.
|
[13] |
UMER R M, FORESTI G L, and MICHELONI C. Deep generative adversarial residual convolutional networks for real-world super-resolution[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 1769–1777. doi: 10.1109/CVPRW50498.2020.00227.
|
[14] |
WANG Xintao, YU Ke, DONG Chao, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 606–615. doi: 10.1109/CVPR.2018.00070.
|
[15] |
PARK S H, MOON Y S, and CHO N I. Flexible style image super-resolution using conditional objective[J]. IEEE Access, 2022, 10: 9774–9792. doi: 10.1109/ACCESS.2022.3144406.
|
[16] |
PARK S H, MOON Y S, and CHO N I. Perception-oriented single image super-resolution using optimal objective estimation[C]. Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 1725–1735. doi: 10.1109/CVPR52729.2023.00172.
|
[17] |
FRITSCHE M, GU Shuhang, and TIMOFTE R. Frequency separation for real-world super-resolution[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, Korea (South), 2019: 3599–3608. doi: 10.1109/ICCVW.2019.00445.
|
[18] |
PRAJAPATI K, CHUDASAMA V, PATEL H, et al. Direct unsupervised super-resolution using generative adversarial network (DUS-GAN) for real-world data[J]. IEEE Transactions on Image Processing, 2021, 30: 8251–8264. doi: 10.1109/TIP.2021.3113783.
|
[19] |
KORKMAZ C, TEKALP A M, and DOGAN Z. Training generative image super-resolution models by wavelet-domain losses enables better control of artifacts[C]. Proceedings of 2014 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 5926–5936. doi: 10.1109/CVPR52733.2024.00566.
|
[20] |
MA Chao, YANG C Y, YANG Xiaokang, et al. Learning a no-reference quality metric for single-image super-resolution[J]. Computer Vision and Image Understanding, 2017, 158: 1–16. doi: 10.1016/j.cviu.2016.12.009.
|
[21] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
[22] |
YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861–2873. doi: 10.1109/TIP.2010.2050625.
|
[23] |
ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. Deep plug-and-play super-resolution for arbitrary blur kernels[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019. doi: 10.1109/CVPR.2019.00177.
|
[24] |
TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. NTIRE 2017 challenge on single image super-resolution: Methods and results[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 114–125. doi: 10.1109/CVPRW.2017.149.
|
[25] |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single image super-resolution based on nonnegative neighbor embedding[C]. Proceedings of the British Machine Vision Conference, 2012. doi: 10.5244/C.26.135. (查阅网上资料,未找到对应的出版地信息,请确认) .
|
[26] |
ZEYDE R, ELAD M, and PROTTER M. On single image scale-up using sparse-representations[C]. Proceedings of the 7th International Conference on Curves and Surfaces, Avignon, France, 2012: 711–730. doi: 10.1007/978-3-642-27413-8_47.
|
[27] |
ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/tpami.2010.161.
|
[28] |
MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76(20): 21811–21838. doi: 10.1007/s11042-016-4020-z.
|