Advanced Search
Volume 46 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
XIU Menglei, DOU Gaoqi, FENG Shimin. Adaptive Fractional Fourier Transform Detection Method for Short Packets of Frequency-shifted Chirp Signal[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4483-4492. doi: 10.11999/JEIT240370
Citation: XIU Menglei, DOU Gaoqi, FENG Shimin. Adaptive Fractional Fourier Transform Detection Method for Short Packets of Frequency-shifted Chirp Signal[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4483-4492. doi: 10.11999/JEIT240370

Adaptive Fractional Fourier Transform Detection Method for Short Packets of Frequency-shifted Chirp Signal

doi: 10.11999/JEIT240370
Funds:  The National Natural Science Foundation of China (61871473), The Naval Engineering University’s Independent Research and Development Program Project (2023503090)
  • Received Date: 2024-05-09
  • Rev Recd Date: 2024-11-26
  • Available Online: 2024-11-30
  • Publish Date: 2025-12-01
  • To address the pulse dispersion issue in detecting frequency-shifted chirp signals with traditional Fractional Fourier Transform (FrFT), an adaptive FrFT detection method is proposed in this paper. Leveraging the structural model of short packets and the Neyman-Pearson detection model, an analytical method is derived to evaluate the false alarm probability and missed detection probability of signal frame detection using an evaluation function and a decision threshold. Incorporating the pulse characteristics of traditional FrFT for complete chirp signals, a correction scheme for the fractional Fourier integral operator is proposed, and the peak distribution function of the frequency-shifted chirp symbol is derived for the adaptive FrFT. Addressing the search time shift issue in the adaptive FrFT detection process, the peak size and distribution of the frequency-shifted chirp symbol are analyzed, and the superiority of the adaptive FrFT detection compared to traditional FrFT is demonstrated.
  • loading
  • [1]
    NOURA M, ATIQUZZAMAN M, and GAEDKE M. Interoperability in internet of things: Taxonomies and open challenges[J]. Mobile Networks and Applications, 2019, 24(3): 796–809. doi: 10.1007/s11036-018-1089-9.
    [2]
    SOBIN C C. A survey on architecture, protocols and challenges in IoT[J]. Wireless Personal Communications, 2020, 112(3): 1383–1429. doi: 10.1007/s11277-020-07108-5.
    [3]
    SON P N, DUY T T, TUAN P V, et al. Short packet communication in underlay cognitive network assisted by an intelligent reflecting surface[J]. ETRI Journal, 2023, 45(1): 28–44. doi: 10.4218/ETRIJ.2021-0435.
    [4]
    HUANG Lei, ZHAO Xiaoyu, CHEN Wei, et al. Low-latency short-packet transmission over a large spatial scale[J]. Entropy, 2021, 23(7): 916. doi: 10.3390/E23070916.
    [5]
    LU Xingbo, YANG Weiwei, and YAN Shihao. Short-packet covert communication with transmission time uncertainty[C]. 2022 7th International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 2022: 628–632. doi: 10.1109/ICCCS55155.2022.9846514.
    [6]
    ZHANG Yanfeng, ZHU Xu, LIU Yujie, et al. Sparse superimposed vector transmission for short-packet high-mobility communication[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1961–1965. doi: 10.1109/LWC.2023.3303234.
    [7]
    韩书君, 吕素玉, 许晓东, 等. RIS辅助的短包通信系统时延与安全性能分析[J]. 北京邮电大学学报, 2022, 45(6): 68–74. doi: 10.13190/j.jbupt.2022-131.

    HAN Shujun, LYU Suyu, XU Xiaodong, et al. Delay and security performance analysis in RIS assisted short packet communication system[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(6): 68–74. doi: 10.13190/j.jbupt.2022-131.
    [8]
    DURISI G, KOCH T, and POPOVSKI P. Toward massive, ultrareliable, and low-latency wireless communication with short packets[J]. Proceedings of the IEEE, 2016, 104(9): 1711–1726. doi: 10.1109/JPROC.2016.2537298.
    [9]
    MOOUSAEI M and SMIDA B. Optimizing pilot overhead for ultra-reliable short-packet transmission[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–5. doi: 10.1109/ICC.2017.7996416.
    [10]
    甘泉. LoRa物联网通信技术[M]. 北京: 清华大学出版社, 2021: 95–96.

    GAN Quan. LoRa IoT Communication Technology[M]. Beijing, China: Tsinghua University Press, 2021: 95–96.
    [11]
    KOÇ A. Operator theory-based discrete fractional Fourier transform[J]. Signal, Image and Video Processing, 2019, 13(7): 1461–1468. doi: 10.1007/s11760-019-01553-x.
    [12]
    ALMEIDA L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084–3091. doi: 10.1109/78.330368.
    [13]
    GRETINGER M, SECARA M, FESTILA C, et al. “Chirp” signal generators for frequency response experiments[C]. 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 2014: 1–4. doi: 10.1109/AQTR.2014.6857860.
    [14]
    李诗铭. Chirp-BOK及多址通信技术研究[D]. [硕士论文], 哈尔滨工程大学, 2019.

    LI Shiming. The study of Chirp-BOK and its multiple access communication technologies[D]. [Master dissertation], Harbin Engineering University, 2019.
    [15]
    王明. 基于Chirp超宽带通信技术的研究与实现[D]. [硕士论文], 电子科技大学, 2010.

    WANG Ming. Research and implementation of Chirp ultra-wideband communication technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2010.
    [16]
    YU Linchen, CAO Jigang, CHEN Mianlong, et al. Key frame extraction scheme based on sliding window and features[J]. Peer-to-Peer Networking and Applications, 2018, 11(5): 1141–1152. doi: 10.1007/s12083-017-0567-3.
    [17]
    CHAUVAT R, GARCIA-PENA A, and PAONNI M. Efficient LDPC-coded CCSK links for robust high data rates GNSS[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 404–417. doi: 10.1109/TAES.2022.3190819.
    [18]
    SAIED K, GHOUWAYEL A C A, and BOUTILLON E. Short frame transmission at very low SNR by associating CCSK modulation with NB-Code[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7194–7206. doi: 10.1109/TWC.2022.3156628.
    [19]
    DILLARD G M, REUTER M, ZEIDDLER J, et al. Cyclic code shift keying: a low probability of intercept communication technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 786–798. doi: 10.1109/TAES.2003.1238736.
    [20]
    KASSEM S. Quasi-cyclic short packet (QCSP) transmission for IoT[D]. Université Bretagne Sud, 2022.
    [21]
    岳佳. 基于频移Chirp调制的通信信号抗截获波形设计[D]. [硕士论文], 哈尔滨工业大学, 2021.

    YUE Jia. Anti-interception waveform design of communication signal based on frequency shift chirp modulation[D]. [Master dissertation], Harbin Institute of Technology, 2021.
    [22]
    东锦鹏, 陈世文, 杨锦程, 等. 基于FRFT的低信噪比LFM信号参数快速估计算法[J]. 指挥控制与仿真, 2024, 46(1): 71–77. doi: 10.3969/j.issn.1673-3819.2024.01.009.

    DONG Jinpeng, CHEN Shiwen, YANG Jincheng, et al. A fast parameter estimation algorithm for LFM signal under low SNR based on FRFT[J]. Command, Control & Simulation, 2024, 46(1): 71–77. doi: 10.3969/j.issn.1673-3819.2024.01.009.
    [23]
    杜欣宜. 基于FRFT频移Chirp调制的物理层安全信号设计[D]. [硕士论文], 哈尔滨工业大学, 2023.

    DU Xinyi. Physical layer security signal design of frequency shift Chirp modulation based on FRFT[D]. [Master dissertation], Harbin Institute of Technology, 2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (121) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return