Advanced Search
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
LI Bin, CUI Zongyong, WANG Haohan, ZHOU Zheng, TIAN Yu, CAO Zongjie. Exemplar Selection Based on Maximizing Non-overlapping Volume in SAR Target Incremental Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3918-3927. doi: 10.11999/JEIT240217
Citation: LI Bin, CUI Zongyong, WANG Haohan, ZHOU Zheng, TIAN Yu, CAO Zongjie. Exemplar Selection Based on Maximizing Non-overlapping Volume in SAR Target Incremental Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3918-3927. doi: 10.11999/JEIT240217

Exemplar Selection Based on Maximizing Non-overlapping Volume in SAR Target Incremental Recognition

doi: 10.11999/JEIT240217
Funds:  The National Natural Science Foundation of China (62271116)
  • Received Date: 2024-03-28
  • Rev Recd Date: 2024-08-21
  • Available Online: 2024-08-30
  • Publish Date: 2024-10-30
  • To ensure the Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) system can quickly adapt to new application environments, it must possess the ability to rapidly learn new classes. Currently, SAR ATR systems require repetitive training of all old class samples when learning new classes, leading to significant waste of storage resources and preventing the recognition model from updating quickly. Preserving a small number of old class examples for subsequent incremental training is crucial for model incremental recognition. To address this issue, Exemplar Selection based on Maximizing Non-overlapping Volume (ESMNV) is proposed in this paper, an exemplar selection algorithm that emphasizes the non-overlapping volume of the distribution. ESMNV transforms the exemplar selection problem for each known class into an asymptotic growth problem of the Non-overlapping volume of the distribution, aiming to maximize the Non-overlapping volume of the distribution of the selected exemplars. ESMNV utilizes the similarity between distributions to represent differences in volume. Firstly, ESMNV uses a kernel function to map the distribution of the target class into a Reconstructed Kernel Hilbert Space (RKHS) and employs higher-order moments to represent the distribution. Then, it uses the Maximum Mean Discrepancy (MMD) to compute the difference between the distribution of the target class and the selected exemplars. Combined with a greedy algorithm, ESMNV progressively selects exemplars that minimize the difference in distribution between the selected exemplars and the target class, ensuring the maximum Non-overlapping volume of the selected exemplars with a limited number.
  • loading
  • [1]
    LI Jianwei, YU Zhentao, YU Lu, et al. A comprehensive survey on SAR ATR in deep-learning era[J]. Remote Sensing, 2023, 15(5): 1454. doi: 10.3390/rs15051454.
    [2]
    WANG Chengwei, LUO Siyi, PEI Jifang, et al. Crucial feature capture and discrimination for limited training data SAR ATR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 291–305. doi: 10.1016/j.isprsjprs.2023.09.014.
    [3]
    徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130.

    XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130.
    [4]
    CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41–75. doi: 10.1023/A:1007379606734.
    [5]
    MCCLOSKEY M and COHEN N J. Catastrophic interference in connectionist networks: The sequential learning problem[J]. Psychology of Learning and Motivation, 1989, 24: 109–165. doi: 10.1016/S0079-7421(08)60536-8.
    [6]
    CHAUDHRY A, DOKANIA P K, AJANTHAN T, et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence[C]. Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 556–572. doi: 10.1007/978-3-030-01252-6_33.
    [7]
    DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Class boundary exemplar selection based incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5782–5792. doi: 10.1109/TGRS.2020.2970076.
    [8]
    MITTAL S, GALESSO S, and BROX T. Essentials for class incremental learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 3528–3517. doi: 10.1109/CVPRW53098.2021.00390.
    [9]
    REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental classifier and representation learning[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5533–5542. doi: 10.1109/CVPR.2017.587.
    [10]
    DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: Defying forgetting in classification tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3366–3385. doi: 10.1109/TPAMI.2021.3057446.
    [11]
    LI Zhizhong and HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935–2947. doi: 10.1109/TPAMI.2017.2773081.
    [12]
    RUSU A A, RABINOWITZ N C, DESJARDINS G, et al. Progressive neural networks[J]. arXiv: 1606.04671, 2016. doi: 10.48550/arXiv.1606.04671.
    [13]
    RUDD E M, JAIN L P, SCHEIRER W J, et al. The extreme value machine[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 762–768. doi: 10.1109/TPAMI.2017.2707495.
    [14]
    SHAO Junming, HUANG Feng, YANG Qinli, et al. Robust prototype-based learning on data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(5): 978–991. doi: 10.1109/TKDE.2017.2772239.
    [15]
    LI Bin, CUI Zongyong, CAO Zongjie, et al. Incremental learning based on anchored class centers for SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235313. doi: 10.1109/TGRS.2022.3208346.
    [16]
    BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): e49–e57. doi: 10.1093/bioinformatics/btl242.
    [17]
    王智睿, 康玉卓, 曾璇, 等. SAR-AIRcraft-1.0: 高分辨率SAR飞机检测识别数据集[J]. 雷达学报, 2023, 12(4): 906–922. doi: 10.12000/JR23043.

    WANG Zhirui, KANG Yuzhuo, ZENG Xuan, et al. SAR-AIRcraft-1.0: High-resolution SAR aircraft detection and recognition dataset[J]. Journal of Radars, 2023, 12(4): 906–922. doi: 10.12000/JR23043.
    [18]
    HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672.
    [19]
    LI Bin, CUI Zongyong, SUN Yuxuan, et al. Density coverage-based exemplar selection for incremental SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5211713. doi: 10.1109/TGRS.2023.3293509.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (184) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return