Advanced Search
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
WENG Xingxing, PANG Chao, XU Bowen, XIA Guisong. Incremental Deep Learning for Remote Sensing Image Interpretation[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3979-4001. doi: 10.11999/JEIT240172
Citation: WENG Xingxing, PANG Chao, XU Bowen, XIA Guisong. Incremental Deep Learning for Remote Sensing Image Interpretation[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3979-4001. doi: 10.11999/JEIT240172

Incremental Deep Learning for Remote Sensing Image Interpretation

doi: 10.11999/JEIT240172
Funds:  The National Natural Science Foundation of China (U22B2011, 62325111)
  • Received Date: 2024-03-14
  • Rev Recd Date: 2024-05-14
  • Available Online: 2024-05-23
  • Publish Date: 2024-10-30
  • The significant advancement of deep learning has facilitated the emergence of high-precision interpretation models for remote-sensing images. However, a notable drawback is that the majority of interpretation models are trained independently on static datasets, rendering them incapable of adapting to open environments and dynamic demands. This limitation poses a substantial obstacle to the widespread and long-term application of remote-sensing interpretation models. Incremental learning, empowering models to continuously learn new knowledge while retaining previous knowledge, has been recently utilized to drive the evolution of interpretation models and improve their performance. A comprehensive investigation of incremental learning methods for multi-modal remote sensing data and diverse interpretation tasks is provided in this paper. Existing research efforts are organized and reviewed in terms of mitigating catastrophic forgetting and facilitating interpretation model evolution. Drawing from this research progress, this study deliberates on the future research directions for incremental learning in remote sensing, with the aim of advancing research in model evolution for remote sensing image interpretation.
  • loading
  • [1]
    周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182–197. doi: 10.11834/jrs.20210164.

    ZHOU Peicheng, CHENG Gong, YAO Xiwen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1): 182–197. doi: 10.11834/jrs.20210164.
    [2]
    梅安新, 彭望琭, 秦其明, 等. 遥感导论[M]. 北京: 高等教育出版社, 2001: 171–175.

    MEI Anxin, PENG Wanglu, QIN Qiming, et al. An Introduction to Remote Sensing[M]. Beijing: Higher Education Press, 2001: 171–175.
    [3]
    BI Qi, QIN Kun, ZHANG Han, et al. Local semantic enhanced ConvNet for aerial scene recognition[J]. IEEE Transactions on Image Processing, 2021, 30: 6498–6511. doi: 10.1109/TIP.2021.3092816.
    [4]
    BI Qi, ZHOU Beichen, QIN Kun, et al. All grains, one scheme (AGOS): Learning multigrain instance representation for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5629217. doi: 10.1109/TGRS.2022.3201755.
    [5]
    YANG Yuqun, TANG Xu, CHEUNG Y M, et al. SAGN: Semantic-aware graph network for remote sensing scene classification[J]. IEEE Transactions on Image Processing, 2023, 32: 1011–1025. doi: 10.1109/TIP.2023.3238310.
    [6]
    DING Jian, XUE Nan, LONG Yang, et al. Learning RoI transformer for oriented object detection in aerial images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2844–2853. doi: 10.1109/CVPR.2019.00296.
    [7]
    HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2785–2794. doi: 10.1109/CVPR46437.2021.00281.
    [8]
    LI Yuxuan, HOU Qibin, ZHENG Zhaohui, et al. Large selective kernel network for remote sensing object detection[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 16748–16759. doi: 10.1109/ICCV51070.2023.01540.
    [9]
    LI Yansheng, CHEN Wei, HUANG Xin, et al. MFVNet: A deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation[J]. Science China Information Sciences, 2023, 66(4): 140305. doi: 10.1007/s11432-022-3599-y.
    [10]
    LIU Yinhe, SHI Sunan, WANG Junjue, et al. Seeing beyond the patch: Scale-adaptive semantic segmentation of high-resolution remote sensing imagery based on reinforcement learning[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 16822–16832. doi: 10.1109/ICCV51070.2023.01547.
    [11]
    BERGAMASCO L, BOVOLO F, and BRUZZONE L. A dual-branch deep learning architecture for multisensor and multitemporal remote sensing semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2147–2162. doi: 10.1109/JSTARS.2023.3243396.
    [12]
    PANG Chao, WU Jiang, DING Jian, et al. Detecting building changes with off-nadir aerial images[J]. Science China Information Sciences, 2023, 66(4): 140306. doi: 10.1007/s11432-022-3691-4.
    [13]
    WU Chen, DU Bo, and ZHANG Liangpei. Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9774–9788. doi: 10.1109/TPAMI.2023.3237896.
    [14]
    PANG Chao, WENG Xingxing, WU Jiang, et al. HiCD: Change detection in quality-varied images via hierarchical correlation distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5611816. doi: 10.1109/TGRS.2024.3367778.
    [15]
    ALHICHRI H. Multitask classification of remote sensing scenes using deep neural networks[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 1195–1198. doi: 10.1109/IGARSS.2018.8518874.
    [16]
    MASANA M, LIU Xialei, TWARDOWSKI B, et al. Class-incremental learning: Survey and performance evaluation on image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5513–5533. doi: 10.1109/TPAMI.2022.3213473.
    [17]
    DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: Defying forgetting in classification tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3366–3385. doi: 10.1109/TPAMI.2021.3057446.
    [18]
    BELOUADAH E, POPESCU A, and KANELLOS I. A comprehensive study of class incremental learning algorithms for visual tasks[J]. Neural Networks, 2021, 135: 38–54. doi: 10.1016/j.neunet.2020.12.003.
    [19]
    LIU Hao, ZHOU Yong, LIU Bing, et al. Incremental learning with neural networks for computer vision: A survey[J]. Artificial Intelligence Review, 2023, 56(5): 4557–4589. doi: 10.1007/s10462-022-10294-2.
    [20]
    周大蔚, 汪福运, 叶翰嘉, 等. 基于深度学习的类别增量学习算法综述[J]. 计算机学报, 2023, 46(8): 1577–1605. doi: 10.11897/SP.J.1016.2023.01577.

    ZHOU Dawei, WANG Fuyun, YE Hanjia, et al. Deep learning for class-incremental learning: A survey[J]. Chinese Journal of Computers, 2023, 46(8): 1577–1605. doi: 10.11897/SP.J.1016.2023.01577.
    [21]
    朱飞, 张煦尧, 刘成林. 类别增量学习研究进展和性能评价[J]. 自动化学报, 2023, 49(3): 635–660. doi: 10.16383/j.aas.c220588.

    ZHU Fei, ZHANG Xuyao, and LIU Chenglin. Class incremental learning: A review and performance evaluation[J]. Acta Automatica Sinica, 2023, 49(3): 635–660. doi: 10.16383/j.aas.c220588.
    [22]
    VAN DE VEN G M, TUYTELAARS T, and TOLIAS A S. Three types of incremental learning[J]. Nature Machine Intelligence, 2022, 4(12): 1185–1197. doi: 10.1038/s42256-022-00568-3.
    [23]
    HIHN H and BRAUN D A. Hierarchically structured task-agnostic continual learning[J]. Machine Learning, 2023, 112(2): 655–686. doi: 10.1007/s10994-022-06283-9.
    [24]
    SHAN Lianlei, WANG Weiqiang, LV Ke, et al. Class-incremental semantic segmentation of aerial images via pixel-level feature generation and task-wise distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5635817. doi: 10.1109/TGRS.2022.3231351.
    [25]
    CERMELLI F, MANCINI M, BULÓ S R, et al. Modeling the background for incremental and weakly-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 10099–10113. doi: 10.1109/TPAMI.2021.3133954.
    [26]
    SHAN Lianlei, WANG Weiqiang, LV Ke, et al. Class-incremental learning for semantic segmentation in aerial imagery via distillation in all aspects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5615712. doi: 10.1109/TGRS.2021.3135456.
    [27]
    FENG Yingchao, SUN Xian, DIAO Wenhui, et al. Continual learning with structured inheritance for semantic segmentation in aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5607017. doi: 10.1109/TGRS.2021.3076664.
    [28]
    RONG Xuee, WANG Peijin, DIAO Wenhui, et al. MiCro: Modeling cross-image semantic relationship dependencies for class-incremental semantic segmentation in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5616218. doi: 10.1109/TGRS.2023.3297203.
    [29]
    RONG Xuee, SUN Xian, DIAO Wenhui, et al. Historical information-guided class-incremental semantic segmentation in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5622618. doi: 10.1109/TGRS.2022.3170349.
    [30]
    GE Jiayi, TANG Hong, YANG Naisen, et al. Rapid identification of damaged buildings using incremental learning with transferred data from historical natural disaster cases[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 105–128. doi: 10.1016/j.isprsjprs.2022.11.010.
    [31]
    YE Zhen, ZHANG Yu, ZHANG Jinxin, et al. A multiscale incremental learning network for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5606015. doi: 10.1109/TGRS.2024.3353737.
    [32]
    PAN Qidi, LIAO Kuo, HE Xuesi, et al. A class-incremental learning method for SAR images based on self-sustainment guidance representation[J]. Remote Sensing, 2023, 15(10): 2631. doi: 10.3390/rs15102631.
    [33]
    RUI Xue, LI Ziqiang, CAO Yang, et al. DILRS: Domain-incremental learning for semantic segmentation in multi-source remote sensing data[J]. Remote Sensing, 2023, 15(10): 2541. doi: 10.3390/rs15102541.
    [34]
    WENG Lean, YANG Wenqing, HU Boni, et al. MDINet: Multidomain incremental network for change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4402315. doi: 10.1109/TGRS.2023.3348878.
    [35]
    LU Xiaonan, SUN Xian, DIAO Wenhui, et al. LIL: Lightweight incremental learning approach through feature transfer for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5611320. doi: 10.1109/TGRS.2021.3102629.
    [36]
    DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Class boundary exemplar selection based incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5782–5792. doi: 10.1109/TGRS.2020.2970076.
    [37]
    LIU Weiwei, NIE Xiangli, ZHANG Bo, et al. Incremental learning with open-set recognition for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5622916. doi: 10.1109/TGRS.2022.3173995.
    [38]
    FU Yimin, LIU Zhunga, WU Changyuan, et al. Class-incremental recognition of objects in remote sensing images with dynamic hybrid exemplar selection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024. doi: 10.1109/TAES.2024.3363114.
    [39]
    LI Bin, CUI Zongyong, CAO Zongjie, et al. Incremental learning based on anchored class centers for SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235313. doi: 10.1109/TGRS.2022.3208346.
    [40]
    XI Jiangbo, YAN Ziyun, JIANG Wandong, et al. Continual learning for scene classification of high resolution remote sensing images[C]. SPIE 12057, Twelfth International Conference on Information Optics and Photonics, Xi’an, China, 2021: 558–574. doi: 10.1117/12.2605919.
    [41]
    TANG Jiaxin, XIANG Deliang, ZHANG Fan, et al. Incremental SAR automatic target recognition with error correction and high plasticity[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1327–1339. doi: 10.1109/JSTARS.2022.3141485.
    [42]
    XU Meng, ZHAO Yuanyuan, LIANG Yajun, et al. Hyperspectral image classification based on class-incremental learning with knowledge distillation[J]. Remote Sensing, 2022, 14(11): 2556. doi: 10.3390/rs14112556.
    [43]
    ZHOU Yongsheng, ZHANG Shuo, SUN Xiaokun, et al. SAR target incremental recognition based on hybrid loss function and class-bias correction[J]. Applied Sciences, 2022, 12(3): 1279. doi: 10.3390/app12031279.
    [44]
    HUANG Heqing, GAO Fei, WANG Jun, et al. An incremental SAR target recognition framework via memory-augmented weight alignment and enhancement discrimination[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4005205. doi: 10.1109/LGRS.2023.3269480.
    [45]
    CHEN Xi, JIANG Jie, LI Zhiqiang, et al. An online continual object detector on VHR remote sensing images with class imbalance[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105549. doi: 10.1016/j.engappai.2022.105549.
    [46]
    ZHENG Zhi, NIE Xiangli, and ZHANG Bo. Fine-grained continual learning for SAR target recognition[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 2207–2210. doi: 10.1109/IGARSS46834.2022.9884149.
    [47]
    AMMOUR N. Continual learning using data regeneration for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8012805. doi: 10.1109/LGRS.2021.3080036.
    [48]
    HINTON Geoffrey, VINYALS Oriol, and DEAN Jeff. Distilling the knowledge in a neural network[FR/OL]. https://arxiv.org/abs/1503.02531, 2014.
    [49]
    CHEN Jingzhou, WANG Shihao, CHEN Ling, et al. Incremental detection of remote sensing objects with feature pyramid and knowledge distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5600413. doi: 10.1109/TGRS.2020.3042554.
    [50]
    YANG Naisen and TANG Hong. GeoBoost: An incremental deep learning approach toward global mapping of buildings from VHR remote sensing images[J]. Remote Sensing, 2020, 12(11): 1794. doi: 10.3390/rs12111794.
    [51]
    FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189–1232. doi: 10.1214/aos/1013203451.
    [52]
    WELLING M. Herding dynamical weights to learn[C]. The 26th Annual International Conference on Machine Learning, Montreal, Canada, 2009: 1121–1128. doi: 10.1145/1553374.1553517.
    [53]
    BHAT S D, BANERJEE B, CHAUDHURI S, et al. CILEA-NET: Curriculum-based incremental learning framework for remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5879–5890. doi: 10.1109/JSTARS.2021.3084408.
    [54]
    OVEIS A H, GIUSTI E, GHIO S, et al. Incremental learning in synthetic aperture radar images using openmax algorithm[C]. 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149627.
    [55]
    DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Open set incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4445–4456. doi: 10.1109/TGRS.2019.2891266.
    [56]
    DANG Sihang, CUI Zongyong, CAO Zongjie, et al. Distribution reliability assessment-based incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5208413. doi: 10.1109/TGRS.2023.3277873.
    [57]
    LI Yuhua and MAGUIRE L. Selecting critical patterns based on local geometrical and statistical information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1189–1201. doi: 10.1109/TPAMI.2010.188.
    [58]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680. doi: 10.5555/2969033.2969125.
    [59]
    KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014: 1–14.
    [60]
    AMMOUR N. Memory using data generator in continual learning for remote sensing scene classification[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 4924–4927. doi: 10.1109/IGARSS47720.2021.9553520.
    [61]
    李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12): 1211–1216. doi: 10.13485/j.cnki.11-2089.2014.0187.

    LI Deren, ZHANG Liangpei, and XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1211–1216. doi: 10.13485/j.cnki.11-2089.2014.0187.
    [62]
    龚健雅, 许越, 胡翔云, 等. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8): 1013–1022. doi: 10.11947/j.AGCS.2021.20210085.

    GONG Jianya, XU Yue, HU Xianyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013–1022. doi: 10.11947/j.AGCS.2021.20210085.
    [63]
    AMMOUR N, BAZI Y, ALHICHRI H, et al. Continual learning approach for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8000905. doi: 10.1109/LGRS.2020.3019071.
    [64]
    ZHAO Ling, XU Linrui, ZHAO Li, et al. Continual learning for remote sensing image scene classification with prompt learning[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6012005. doi: 10.1109/LGRS.2023.3328981.
    [65]
    YE Dingqi, PENG Jian, LI Haifeng, et al. Better memorization, better recall: A lifelong learning framework for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5626814. doi: 10.1109/TGRS.2022.3190392.
    [66]
    LI Junxi, SUN Xian, DIAO Wenhui, et al. Class-incremental learning network for small objects enhancing of semantic segmentation in aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5612920. doi: 10.1109/TGRS.2021.3124303.
    [67]
    TASAR O, TARABALKA Y, and ALLIEZ P. Incremental learning for semantic segmentation of large-scale remote sensing data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3524–3537. doi: 10.1109/JSTARS.2019.2925416.
    [68]
    WANG Zifeng, ZHANG Zizhao, LEE C, et al. Learning to prompt for continual learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 139–149. doi: 10.1109/CVPR52688.2022.00024.
    [69]
    TASAR O, TARABALKA Y, and ALLIEZ P. Continual learning for dense labeling of satellite images[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 4943–4946. doi: 10.1109/IGARSS.2019.8898615.
    [70]
    CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998.
    [71]
    DI Yanghua, JIANG Zhiguo, and ZHANG Haopeng. A public dataset for fine-grained ship classification in optical remote sensing images[J]. Remote Sensing, 2021, 13(4): 747. doi: 10.3390/rs13040747.
    [72]
    ZHOU Weixun, NEWSAM S, LI Congmin, et al. PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 197–209. doi: 10.1016/j.isprsjprs.2018.01.004.
    [73]
    LI Haifeng, JIANG Hao, GU Xin, et al. CLRS: Continual learning benchmark for remote sensing image scene classification[J]. Sensors, 2020, 20(4): 1226. doi: 10.3390/s20041226.
    [74]
    WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155–1167. doi: 10.1109/TGRS.2018.2864987.
    [75]
    XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945.
    [76]
    LI Haifeng, DOU Xin, TAO Chao, et al. RSI-CB: A large-scale remote sensing image classification benchmark using crowdsourced data[J]. Sensors, 2020, 20(6): 1594. doi: 10.3390/s20061594.
    [77]
    YANG Yi and NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]. The 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010: 270–279. doi: 10.1145/1869790.1869829.
    [78]
    ZHAO Bei, ZHONG Yanfei, XIA Guisong, et al. Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2108–2123. doi: 10.1109/TGRS.2015.2496185.
    [79]
    LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023.
    [80]
    XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983. doi: 10.1109/CVPR.2018.00418.
    [81]
    CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119–132. doi: 10.1016/j.isprsjprs.2014.10.002.
    [82]
    WAQAS ZAMIR S, ARORA A, GUPTA A, et al. ISAID: A large-scale dataset for instance segmentation in aerial images[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 28–37.
    [83]
    SUN Xian, WANG Peijin, YAN Zhiyuan, et al. Automated high-resolution earth observation image interpretation: Outcome of the 2020 Gaofen challenge[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8922–8940. doi: 10.1109/JSTARS.2021.3106941.
    [84]
    International Society for Photogrammetry and Remote Sensing. 2D semantic labeling contest–Potsdam[EB/OL]. https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx, 2024.
    [85]
    International Society for Photogrammetry and Remote Sensing. 2D semantic labeling-Vaihingen data[EB/OL]. https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx, 2024.
    [86]
    DEMIR I, KOPERSKI K, LINDENBAUM D, et al. DeepGlobe 2018: A challenge to parse the earth through satellite images[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 172–181. doi: 10.1109/CVPRW.2018.00031.
    [87]
    李雪, 姚光乐, 王洪辉, 等. 基于样本增量学习的遥感影像分类[J]. 计算机应用, 2024, 44(3): 732–736. doi: 10.11772/j.issn.1001-9081.2023030366.

    LI Xue, YAO Guangle, WANG Honghui, et al. Remote sensing image classification based on sample incremental learning[J]. Journal of Computer Applications, 2024, 44(3): 732–736. doi: 10.11772/j.issn.1001-9081.2023030366.
    [88]
    WANG Ming, YU Dayu, HE Wanting, et al. Domain-incremental learning for fire detection in space-air-ground integrated observation network[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103279. doi: 10.1016/j.jag.2023.103279.
    [89]
    SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5604816. doi: 10.1109/TGRS.2021.3085870.
    [90]
    LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-2: 565–571. doi: 10.5194/isprs-archives-XLII-2-565-2018.
    [91]
    WANG Ming, JIANG Liangcun, YUE Peng, et al. FASDD: An open-access 100, 000-level flame and smoke detection dataset for deep learning in fire detection[J]. Earth System Science Data. doi: 10.5194/essd-2023-73.
    [92]
    SHAMSOSHOARA A, AFGHAH F, RAZI A, et al. Aerial imagery pile burn detection using deep learning: The FLAME dataset[J]. Computer Networks, 2021, 193: 108001. doi: 10.1016/j.comnet.2021.108001.
    [93]
    GUPTA R, GOODMAN B, PATEL N, et al. Creating xBD: A dataset for assessing building damage from satellite imagery[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 10–17.
    [94]
    SUMBUL G, CHARFUELAN M, DEMIR B, et al. Bigearthnet: A large-scale benchmark archive for remote sensing image understanding[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 5901–5904. doi: 10.1109/IGARSS.2019.8900532.
    [95]
    HELBER P, BISCHKE B, DENGEL A, et al. EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2217–2226. doi: 10.1109/JSTARS.2019.2918242.
    [96]
    ZHAO Lijun, TANG Ping, and HUO Lianzhi. Feature significance-based multibag-of-visual-words model for remote sensing image scene classification[J]. Journal of Applied Remote Sensing, 2016, 10(3): 035004. doi: 10.1117/1.JRS.10.035004.
    [97]
    ZOU Qin, NI Lihao, ZHANG Tong, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2321–2325. doi: 10.1109/LGRS.2015.2475299.
    [98]
    BASU S, GANGULY S, MUKHOPADHYAY S, et al. DeepSat: A learning framework for satellite imagery[C]. The 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, USA, 2015: 37. doi: 10.1145/2820783.2820816.
    [99]
    TONG Xinyi, XIA Guisong, LU Qikai, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 2020, 237: 111322. doi: 10.1016/j.rse.2019.111322.
    [100]
    第八届中国计算机学会大数据与计算智能大赛. 遥感影像地块分割数据集[EB/OL]. https://www.datafountain.cn/competitions/475, 2020.

    The 8th CCF Big Data and Computing Intelligence Contest. Remote sensing image segmentation dataset[EB/OL]. https://www.datafountain.cn/competitions/475, 2020.
    [101]
    WANG Junjue, ZHENG Zhuo, MA Ailong, et al. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation[C/OL]. The 35th Conference on Neural Information Processing Systems Track on Datasets and Benchmarks, 2021: 1–12.
    [102]
    MA Xiaojie, JI Kefeng, FENG Sijia, et al. Open set recognition with incremental learning for SAR target classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5106114. doi: 10.1109/TGRS.2023.3283423.
    [103]
    KEYDEL E R, LEE S W, and MOORE J T. Mstar extended operating conditions: A tutorial[C]. SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, USA, 1996: 228–242. doi: 10.1117/12.242059.
    [104]
    HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARship: A dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672.
    [105]
    BAI Jing, YUAN Anran, XIAO Zhu, et al. Class incremental learning with few-shots based on linear programming for hyperspectral image classification[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 5474–5485. doi: 10.1109/TCYB.2020.3032958.
    [106]
    ZHAO Wenzhi, PENG Rui, WANG Qiao, et al. Life-long learning with continual spectral-spatial feature distillation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5544214. doi: 10.1109/TGRS.2022.3222520.
    [107]
    GRAÑA M, VEGANZONS M A, and AYERDI B. Hyperspectral remote sensing scenes: Pavia Centre and university[EB/OL]. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University, 2024.
    [108]
    GRAÑA M, VEGANZONS M A, and AYERDI B. Hyperspectral remote sensing scenes: Salinas[EB/OL]. https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Salinas, 2024.
    [109]
    The National Center for Airborne Laser Mapping. 2013 IEEE GRSS data fusion contest-fusion of hyperspectral and LiDAR data[EB/OL]. https://hyperspectral.ee.uh.edu/?page_id, 2024.
    [110]
    BAUMGARDNER M F, BIEHL L L, and LANDGREBE D A. 220 band aviris hyperspectral image data set: June 12, 1992 Indian pine test site 3[EB/OL]. https://purr.purdue.edu/publications/1947/1, 2015.
    [111]
    LENCZNER G, CHAN-HON-TONG A, LUMINARI N, et al. Weakly-supervised continual learning for class-incremental segmentation[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 4843–4846. doi: 10.1109/IGARSS46834.2022.9884547.
    [112]
    ZHU Zining, WANG Peijin, DIAO Wenhui, et al. Few-shot incremental learning with continual prototype calibration for remote sensing image fine-grained classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196: 210–227. doi: 10.1016/j.isprsjprs.2022.12.024.
    [113]
    ZHAO Yan, ZHAO Lingjun, DING Ding, et al. Few-shot class-incremental SAR target recognition via cosine prototype learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5212718. doi: 10.1109/TGRS.2023.3298016.
    [114]
    WANG Li, YANG Xinyao, TAN Haoyue, et al. Few-shot class-incremental SAR target recognition based on hierarchical embedding and incremental evolutionary network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204111. doi: 10.1109/TGRS.2023.3248040.
    [115]
    XU Zekai, ZHANG Mingyi, HOU Jiayue, et al. Delving into transformer for incremental semantic segmentation[EB/OL]. https://arxiv.org/abs/2211.10253, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(13)

    Article Metrics

    Article views (871) PDF downloads(189) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return