| Citation: | SUN Liting, LIU Zheng, HUANG Zhitao. Universal Radio Frequency Fingerprinting across Receiving Systems Using Receiving Domain Separation[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3966-3978. doi: 10.11999/JEIT240171 | 
 
	                | [1] | XU Zhengwei, HAN Guangjie, LI Liu, et al. A lightweight specific emitter identification model for IIoT devices based on adaptive broad learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 7066–7075. doi:  10.1109/TII.2022.3206309. | 
| [2] | ZHA Haoran, WANG Hanhong, FENG Zhongming, et al. LT-SEI: Long-tailed specific emitter identification based on decoupled representation learning in low-resource scenarios[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 52(1): 929–943. doi:  10.1109/TITS.2023.3308716. | 
| [3] | 韦建宇, 俞璐. 通信辐射源个体识别中的特征提取方法综述[J]. 通信技术, 2022, 55(6): 681–687. doi:  10.3969/j.issn.1002-0802.2022.06.001. WEI Jianyu and YU Lu. Overview of radio frequency fingerprint extraction in communication specific emitter identification[J]. Communications Technology, 2022, 55(6): 681–687. doi:  10.3969/j.issn.1002-0802.2022.06.001. | 
| [4] | HE Boxiang and WANG Fanggang. Specific emitter identification via sparse Bayesian learning versus model-agnostic meta-learning[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 3677–3691. doi:  10.1109/TIFS.2023.3287073. | 
| [5] | REHMAN S U, SOWERBY K W, and COGHILL C. Analysis of impersonation attacks on systems using RF fingerprinting and low-end receivers[J]. Journal of Computer and System Sciences, 2014, 80(3): 591–601. doi:  10.1016/j.jcss.2013.06.013. | 
| [6] | RAMSEY B W, STUBBS T D, MULLINS B E, et al. Wireless infrastructure protection using low-cost radio frequency fingerprinting receivers[J]. International Journal of Critical Infrastructure Protection, 2015, 8: 27–39. doi:  10.1016/j.ijcip.2014.11.002. | 
| [7] | 乐波, 王桂良, 黄渊凌, 等. 接收机畸变对辐射源指纹识别的影响[J]. 电讯技术, 2020, 60(3): 273–278. doi:  10.3969/j.issn.1001-893x.2020.03.005. LE Bo, WANG Guiliang, HUANG Yuanling, et al. Influence of receiver distortion characteristics on specific emitter identification[J]. Telecommunication Engineering, 2020, 60(3): 273–278. doi:  10.3969/j.issn.1001-893x.2020.03.005. | 
| [8] | ZHENG Yenan, YING Wenwei, HONG Shaohua,    et al. A method for cross-receiver specific emitter identification based on CBAM-CNN-BDA[C]. 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 2022: 1320–1324. doi:  10.1109/ICCASIT55263.2022.9987240. | 
| [9] | FANG Yuyuan, WEI Song, ZHAO Yang, et al. Radar-specific emitter identification with only envelope power based on multidimensional complex noncentral chi-square classifier[J]. IEEE Sensors Journal, 2023, 23(17): 20223–20235. doi:  10.1109/JSEN.2023.3298352. | 
| [10] | TAN Kaiwen, YAN Wenjun, ZHANG Limin, et al. Semi-supervised specific emitter identification based on bispectrum feature extraction CGAN in multiple communication scenarios[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 292–310. doi:  10.1109/TAES.2022.3184619. | 
| [11] | ZHU Chenyu, LIU Liang, and PENG Xiaoyan. Specific emitter identification based on temporal convolutional network sequence processing[J]. IEEE Communications Letters, 2023, 27(10): 2667–2671. doi:  10.1109/LCOMM.2023.3312390. | 
| [12] | WU Zitao, WANG Fanggang, and HE Boxiang. Specific emitter identification via contrastive learning[J]. IEEE Communications Letters, 2023, 27(4): 1160–1164. doi:  10.1109/LCOMM.2023.3247900. | 
| [13] | BALDINI G, GIULIANI R, GENTILE C,    et al. Measures to address the lack of portability of the RF fingerprints for radiometric identification[C]. 9th IFIP International Conference on New Technologies, Mobility and Security, Paris, France, 2018: 1–5. doi:  10.1109/NTMS.2018.8328703. | 
| [14] | SHI Mengkai, HUANG Yuanling, and WANG Guiliang. Carrier leakage estimation method for cross-receiver specific emitter identification[J]. IEEE Access, 2021, 9: 26301–26312. doi:  10.1109/ACCESS.2021.3058167. | 
| [15] | HE Boxiang and WANG Fanggang. Cooperative specific emitter identification via multiple distorted receivers[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3791–3806. doi:  10.1109/TIFS.2020.30017210. | 
| [16] | FAWAZ H I, DEL GROSSO G, KERDONCUFF T,    et al. Deep unsupervised domain adaptation for time series classification: A benchmark[EB/OL]. https://arXiv.org/abs/2312.09857v2, 2023. | 
| [17] | LI Ya, GONG Mingming, TIAN Xinmei,    et al. Domain generalization via conditional invariant representations[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 3579–3587. doi:  10.1609/aaai.v32i1.11682. | 
| [18] | MATSUURA T and HARADA T. Domain generalization using a mixture of multiple latent domains[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11749–11756. doi:  10.1609/aaai.v34i07.6846. | 
| [19] | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030. | 
| [20] | BOUSMALIS K, TRIGEORGIS G, SILBERMAN N,    et al. Domain separation networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 343–351. | 
| [21] | SUN Liting, WANG Xiang, HUANG Zhitao, et al. Radio-frequency fingerprint extraction based on feature inhomogeneity[J]. IEEE Internet of Things Journal, 2022, 9(18): 17292–17308. doi:  10.1109/JIOT.2022.3154595. | 
| [22] | SRIDHARAN G. Phase noise in multi-carrier systems[D]. [Master dissertation], University of Toronto, 2010. | 
| [23] | HUANG Yuanling and ZHENG Hui. Theoretical performance analysis of radio frequency fingerprinting under receiver distortions[J]. Wireless Communications and Mobile Computing, 2015, 15(5): 823–833. doi:  10.1002/wcm.2386. | 
| [24] | 陈翔, 汪连栋, 许雄, 等. 基于Raw I/Q和深度学习的射频指纹识别方法综述[J]. 雷达学报, 2023, 12(1): 214–234. doi:  10.12000/JR22140. CHEN Xiang, WANG Liandong, XU Xiong, et al. A review of radio frequency fingerprinting methods based on Raw I/Q and deep learning[J]. Journal of Radars, 2023, 12(1): 214–234. doi:  10.12000/JR22140. | 
| [25] | 郭瑞鹏. 基于深度学习的雷达辐射源个体识别技术研究[D]. [硕士论文], 西安电子科技大学, 2022. doi:  10.27389/d.cnki.gxadu.2022.002199. GUO Ruipeng. Research on individual identification technology of radar emitter based on deep learning[D]. [Master dissertation], Xidian University, 2022. doi:  10.27389/d.cnki.gxadu.2022.002199. | 
| [26] | DING Lida, WANG Shilian, WANG Fanggang, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591–2594. doi:  10.1109/LCOMM.2018.2871465. | 
| [27] | AL-SHAWABKA A, RESTUCCIA F, D’ORO S,    et al. Exposing the fingerprint: Dissecting the impact of the wireless channel on radio fingerprinting[C]. IEEE Conference on Computer Communications, Toronto, Canada, 2020: 646–655. doi:  10.1109/INFOCOM41043.2020.9155259. | 
