| Citation: | HE Qishan, ZHAO Lingjun, JI Kefeng, KUANG Gangyao. Research Progress of Deep Learning Technology for Imaging Parameter Sensitivity of SAR Target Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3827-3848. doi: 10.11999/JEIT240155 | 
 
	                | [1] | 冯博迪, 杨海涛, 李高源, 等. 神经网络在SAR图像目标识别中的研究综述[J]. 兵器装备工程学报, 2021, 42(10): 15–22. doi:  10.11809/bqzbgcxb2021.10.003. FENG Bodi, YANG Haitao, LI Gaoyuan, et al. Research summary of convolutional neural network in SAR image target recognition[J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 15–22. doi:  10.11809/bqzbgcxb2021.10.003. | 
| [2] | 黄钟泠, 姚西文, 韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨[J]. 雷达学报, 2021, 11(1): 107–125. doi:  10.12000/JR21165. HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165 | 
| [3] | NOVAK L M, OWIRKA G J, and NETISHEN C M. Radar target identification using spatial matched filters[J]. Pattern Recognition, 1994, 27(4): 607–617. doi:  10.1016/0031-3203(94)90040-x. | 
| [4] | 董刚刚. 基于单演信号的SAR图像目标识别技术研究[D]. [博士论文], 国防科学技术大学, 2016. DONG Ganggang. Study on target recognition in SAR imagevia the monogenic signal[D]. [Ph. D. dissertation], National University of Defense Technology, 2016. | 
| [5] | SISTERSON L K, DELANEY J R, GRAVINA S J, et al. An architecture for semi-automated radar image exploitation[J]. Lincoln Laboratory Journal, 1998, 11(2): 175–204. | 
| [6] | MORRISON D P, ECKERT JR A C, and SHIELDS F J. Studies of advanced detection technology sensor (ADTS) data[C]. SPIE 2230, Algorithms for Synthetic Aperture Radar Imagery, Orlando, USA, 1994: 370–378. doi:  10.1117/12.177185. | 
| [7] | ROSS T D, WORRELL S W, VELTEN V J,    et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]. SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery, Orlando, USA, 1998: 566–573. doi:  10.1117/12.321859. | 
| [8] | RESSLER M B, WILLIAMS R L, GROSS D C,    et al. Bayesian multiple-look updating applied to the SHARP ATR system[C]. SPIE 4053, Algorithms for Synthetic Aperture Radar Imagery VII, Orlando, USA, 2000: 418–427. doi:  10.1117/12.396354. | 
| [9] | 丁军, 刘宏伟, 王英华, 等. 一种联合阴影和目标区域图像的SAR目标识别方法[J]. 电子与信息学报, 2015, 37(3): 594–600. doi:  10.11999/JEIT140713. DING Jun, LIU Hongwei, WANG Yinghua, et al. SAR target recognition by combining images of the shadow region and target region[J]. Journal of Electronics & Information Technology, 2015, 37(3): 594–600. doi:  10.11999/JEIT140713. | 
| [10] | RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi:  10.1007/s11263-015-0816-y. | 
| [11] | CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi:  10.1109/TGRS.2016.2551720. | 
| [12] | 杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9(1): 34–54. doi:  10.12000/JR19104. DU Lan, WANG Zhaocheng, WANG Yan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(1): 34–54. doi:  10.12000/JR19104. | 
| [13] | 郁文贤. 自动目标识别的工程视角述评[J]. 雷达学报, 2022, 11(5): 737–752. doi:  10.12000/JR22178. YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi:  10.12000/JR22178. | 
| [14] | KECHAGIAS-STAMATIS O and AOUF N. Automatic target recognition on synthetic aperture radar imagery: A survey[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(3): 56–81. doi:  10.1109/MAES.2021.3049857. | 
| [15] | LI Jianwei, YU Zhentao, YU Lu, et al. A comprehensive survey on SAR ATR in deep-learning era[J]. Remote Sensing, 2023, 15(5): 1454. doi:  10.3390/rs15051454. | 
| [16] | KEYDEL E R, LEE S W, and MOORE J T. MSTAR extended operating conditions: A tutorial[C]. SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, USA, 1996: 228–242. doi:  10.1117/12.242059. | 
| [17] | 王璇. 分辨率与SAR目标检测分类性能的关联性研究[D]. [硕士论文], 电子科技大学, 2012. WANG Xuan. Research on the correlation between resolution and SAR target detection and classification performance[D]. [Master dissertation], University of Electronic Science and Technology of China, 2012. | 
| [18] | CASTEEL JR C H, GORHAM L A, MINARDI M J,    et al. A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment[C]. SPIE 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, Orlando, USA, 2007: 97–103. doi:  10.1117/12.731457. | 
| [19] | ERTIN E, AUSTIN C D, SHARMA S,    et al. GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures[C]. SPIE 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, Orlando, USA, 2007: 9–20. doi:  10.1117/12.723245. | 
| [20] | 朱岱寅, 耿哲, 俞翔, 等. 地面目标多角度SAR数据集构建与目标识别方法[J]. 南京航空航天大学学报, 2022, 54(5): 985–994. doi:  10.16356/j.1005-2615.2022.05.022. ZHU Daiyin, GENG Zhe, YU Xiang, et al. SAR database construction for ground targets at multiple angles and target recognition method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 985–994. doi:  10.16356/j.1005-2615.2022.05.022. | 
| [21] | SUN Xian, LV Yixuan, WANG Zhirui, et al. Scan: Scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226517. doi:  10.1109/TGRS.2022.3166174. | 
| [22] | HUANG Lanqing, LIU Bin, LI Boying, et al. Opensarship: A dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi:  10.1109/JSTARS.2017.2755672. | 
| [23] | LI Boying, LIU Bin, HUANG Lanqing,    et al. OpenSARShip 2.0: A large-volume dataset for deeper interpretation of ship targets in sentinel-1 imagery[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017: 1–5. doi:  10.1109/BIGSARDATA.2017.8124929. | 
| [24] | HOU Xiyue, AO Wei, SONG Qian, et al. FUSAR-ship: Building a high-resolution SAR-AIS matchup dataset of gaofen-3 for ship detection and recognition[J]. Science China Information Sciences, 2020, 63(4): 140303. doi:  10.1007/s11432-019-2772-5. | 
| [25] | MALMGREN-HANSEN D, KUSK A, DALL J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1484–1488. doi:  10.1109/LGRS.2017.2717486. | 
| [26] | LEWIS B, SCARNATI T, SUDKAMP E,    et al. A SAR dataset for ATR development: The synthetic and measured paired labeled experiment (SAMPLE)[C]. SPIE 10987, Algorithms for Synthetic Aperture Radar Imagery XXVI, Baltimore, USA, 2019: 39–54. doi:  10.1117/12.2523460. | 
| [27] | ZHANG Jinsong, XING Mengdao, and XIE Yiyuan. FEC: A feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2174–2187. doi:  10.1109/TGRS.2020.3003264. | 
| [28] | ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi:  10.1109/TGRS.2021.3082759. | 
| [29] | WAGNER S A. SAR ATR by a combination of convolutional neural network and support vector machines[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2861–2872. doi:  10.1109/TAES.2016.160061. | 
| [30] | 王汝意, 张汉卿, 韩冰, 等. 基于角度内插仿真的飞机目标多角度SAR数据集构建方法研究[J]. 雷达学报, 2022, 11(4): 637–651. doi:  10.12000/jr21193. WANG Ruyi, ZHANG Hanqing, HAN Bing, et al. Multiangle SAR dataset construction of aircraft targets based on angle interpolation simulation[J]. Journal of Radars, 2022, 11(4): 637–651. doi: 10.12000/JR21193. doi:  10.12000/jr21193. | 
| [31] | LIU Lei, PAN Zongxu, QIU Xiaolan,    et al. SAR target classification with CycleGAN transferred simulated samples[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4411–4414. doi:  10.1109/IGARSS.2018.8517866. | 
| [32] | HE Qishan, ZHAO Lingjun, JI Kefeng, et al. SAR target recognition based on task-driven domain adaptation using simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4019205. doi:  10.1109/LGRS.2021.3116707. | 
| [33] | CHEN Zhuo, ZHAO Lingjun, HE Qishan, et al. Pixel-level and feature-level domain adaptation for heterogeneous SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4515205. doi:  10.1109/LGRS.2022.3214750. | 
| [34] | SHI Yu, DU Lan, GUO Yuchen, et al. Unsupervised domain adaptation based on progressive transfer for ship detection: From optical to SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5230317. doi:  10.1109/TGRS.2022.3185298. | 
| [35] | 化盈盈, 张岱墀, 葛仕明. 深度学习模型可解释性的研究进展[J]. 信息安全学报, 2020, 5(3): 1–12. doi:  10.19363/J.cnki.cn10-1380/tn.2020.05.01. HUA Yingying, ZHANG Daichi, and GE Shiming. Research progress in the interpretability of deep learning models[J]. Journal of Cyber Security, 2020, 5(3): 1–12. doi:  10.19363/J.cnki.cn10-1380/tn.2020.05.01. | 
| [36] | 徐丰, 金亚秋. 微波视觉与SAR图像智能解译[J]. 雷达学报, 2024, 13(2): 285–306. doi:  10.12000/JR23225. XU Feng and JIN Yaqiu. Microwave vision and intelligent perception of radar imagery[J]. Journal of Radars, 2024, 13(2): 285–306. doi:  10.12000/JR23225. | 
| [37] | XU Feng and ZHANG Xu. On the concept of semantic electromagnetics[C]. 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 2022: 1–3. doi:  10.1109/ACES-China56081.2022.10065038. | 
| [38] | ZHANG Tianwen and ZHANG Xiaoling. Injection of traditional hand-crafted features into modern CNN-based models for SAR ship classification: What, why, where, and how[J]. Remote Sensing, 2021, 13(11): 2091. doi:  10.3390/rs13112091. | 
| [39] | HUANG Zhongling, YAO Xiwen, LIU Ying, et al. Physically explainable CNN for SAR image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 25–37. doi:  10.1016/j.isprsjprs.2022.05.008. | 
| [40] | POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi:  10.1109/83.552098. | 
| [41] | DING Baiyuan, WEN Gongjian, HUANG Xiaohong, et al. Target recognition in synthetic aperture radar images via matching of attributed scattering centers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3334–3347. doi:  10.1109/JSTARS.2017.2671919. | 
| [42] | DING Baiyuan, WEN Gongjian, HUANG Xiaohong, et al. Data augmentation by multilevel reconstruction using attributed scattering center for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 979–983. doi:  10.1109/LGRS.2017.2692386. | 
| [43] | WU Min, XING Mengdao, ZHANG Lei,    et al. Super-resolution imaging algorithm based on attributed scattering center model[C]. 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), Xi’an, China, 2014: 271–275. doi:  10.1109/ChinaSIP.2014.6889246. | 
| [44] | LIU Hongwei, JIU Bo, LI Fei, et al. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2604–2614. doi:  10.1109/TAP.2017.2673764. | 
| [45] | ZHOU Yu, LI Yi, XIE Weitong, et al. A convolutional neural network combined with attributed scattering centers for SAR ATR[J]. Remote Sensing, 2021, 13(24): 5121. doi:  10.3390/rs13245121. | 
| [46] | LIU Zhunga, WANG Longfei, WEN Zaidao, et al. Multilevel scattering center and deep feature fusion learning framework for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5227914. doi:  10.1109/TGRS.2022.3174703. | 
| [47] | FENG Sijia, JI Kefeng, ZHANG Linbin, et al. SAR target classification based on integration of asc parts model and deep learning algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10213–10225. doi:  10.1109/JSTARS.2021.3116979. | 
| [48] | FENG Sijia, JI Kefeng, WANG Fulai, et al. PAN: Part attention network integrating electromagnetic characteristics for interpretable SAR vehicle target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204617. doi:  10.1109/TGRS.2023.3256399. | 
| [49] | CHOI J H, LEE M J, JEONG N H, et al. Fusion of target and shadow regions for improved SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226217. doi:  10.1109/TGRS.2022.3165849. | 
| [50] | LI Feng, YI Min, ZHANG Chaoqi, et al. POLSAR target recognition using a feature fusion framework based on monogenic signal and complex-valued nonlocal network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 7859–7872. doi:  10.1109/JSTARS.2022.3194551. | 
| [51] | LI Feng, ZHANG Chaoqi, ZHANG Xin, et al. MF-DCMANet: A multi-feature dual-stage cross manifold attention network for PolSAR target recognition[J]. Remote Sensing, 2023, 15(9): 2292. doi:  10.3390/rs15092292. | 
| [52] | LANG Haitao, WU Siwen, and XU Yongjie. Ship classification in SAR images improved by AIS knowledge transfer[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 439–443. doi:  10.1109/LGRS.2018.2792683. | 
| [53] | XING Xiangwei, JI Kefeng, ZOU Huanxin, et al. Ship classification in TerraSAR-X images with feature space based sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1562–1566. doi:  10.1109/LGRS.2013.2262073. | 
| [54] | MARGARIT G and TABASCO A. Ship classification in single-pol SAR images based on fuzzy logic[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3129–3138. doi:  10.1109/TGRS.2011.2112371. | 
| [55] | 吕艺璇, 王智睿, 王佩瑾, 等. 基于散射信息和元学习的SAR图像飞机目标识别[J]. 雷达学报, 2022, 11(4): 652–665. doi:  10.12000/JR22044. LYU Yixuan, WANG Zhirui, WANG Peijin et al. Scattering information and meta-learning based SAR images interpretation for aircraft target recognition[J]. Journal of Radars, 2022, 11(4): 652–665. doi:  10.12000/JR22044. | 
| [56] | KANG Yuzhuo, WANG Zhirui, ZUO Haoyu, et al. ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202117. doi:  10.1109/TGRS.2023.3236987. | 
| [57] | KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: A new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2318–2331. doi:  10.1109/TKDE.2017.2720168. | 
| [58] | HUANG Zhongling, DATCU M, PAN Zongxu, et al. Deep SAR-Net: Learning objects from signals[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161: 179–193. doi:  10.1016/j.isprsjprs.2020.01.016. | 
| [59] | HUANG Zhongling, DATCU M, PAN Zongxu,    et al. A hybrid and explainable deep learning framework for SAR images[C]. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 1727–1730. doi:  10.1109/IGARSS39084.2020.9323845. | 
| [60] | HUANG Zhongling, DUMITRU C O, and REN Jun. Physics-aware feature learning of sar images with deep neural networks: A case study[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 1264–1267. doi:  10.1109/IGARSS47720.2021.9554842. | 
| [61] | LEE J S, GRUNES M R, AINSWORTH T L, et al. Unsupervised classification using polarimetric decomposition and the complex wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249–2258. doi:  10.1109/36.789621. | 
| [62] | LIU Jiaming, XING Mengdao, YU Hanwen, et al. EFTL: Complex convolutional networks with electromagnetic feature transfer learning for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5209811. doi:  10.1109/TGRS.2021.3083261. | 
| [63] | FENG Sijia, JI Kefeng, MA Xiaojie, et al. Target region segmentation in SAR vehicle chip image with ACM net[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4014605. doi:  10.1109/LGRS.2021.3085188. | 
| [64] | FENG Sijia, JI Kefeng, WANG Fulai, et al. Electromagnetic scattering feature (ESF) module embedded network based on ASC model for robust and interpretable SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235415. doi:  10.1109/TGRS.2022.3208333. | 
| [65] | HUANG Zhongling, WU Chong, YAO Xiwen, et al. Physics inspired hybrid attention for SAR target recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 207: 164–174. doi:  10.1016/j.isprsjprs.2023.12.004. | 
| [66] | 黄钟泠, 吴冲, 姚西文, 等. 基于时频分析的SAR目标微波视觉特性智能感知方法与应用[J]. 雷达学报, 2024, 13(2): 331–344. doi:  10.12000/jr23191. HUANG Zhongling, WU Chong, YAO Xiwen et al. Physically explainable intelligent perception and application of SAR target characteristics based on time-frequency analysis[J]. Journal of Radars, 2024, 13(2): 331–344. doi: 10.12000/JR23191. doi:  10.12000/jr23191. | 
| [67] | TAI T, TODA M, SENZAKI K,    et al. Leveraging physics-guided features for domain adaptation in SAR target classification[C]. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 6001–6004. doi:  10.1109/IGARSS52108.2023.10283259. | 
| [68] | DING Jun, CHEN Bo, LIU Hongwei, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368. doi:  10.1109/LGRS.2015.2513754. | 
| [69] | GUO Jiayi, LEI Bin, DING Chibiao, et al. Synthetic aperture radar image synthesis by using generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1111–1115. doi:  10.1109/LGRS.2017.2699196. | 
| [70] | ZHANG Mingrui, CUI Zongyong, WANG Xianyuan,    et al. Data augmentation method of SAR image dataset[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 5292–5295. doi:  10.1109/IGARSS.2018.8518825. | 
| [71] | 张明蕊. SAR图像数据分集与扩容方法研究[D]. [硕士论文], 电子科技大学, 2019. ZHANG Mingrui. Research of SAR image data diversity and data augmentation method[D]. [Master dissertation], University of Electronic Science and Technology of China, 2019. | 
| [72] | DING Baiyuan and WEN Gongjian. Target recognition of SAR images based on multi-resolution representation[J]. Remote Sensing Letters, 2017, 8(11): 1006–1014. doi:  10.1080/2150704X.2017.1346397. | 
| [73] | YAN Yue. Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition[J]. Journal of Electronic Imaging, 2018, 27(2): 023024. doi:  10.1117/1.JEI.27.2.023024. | 
| [74] | WANG Ruonan, WANG Zhaocheng, XIA Kewen, et al. Target recognition in single-channel SAR images based on the complex-valued convolutional neural network with data augmentation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 796–804. doi:  10.1109/TAES.2022.3190804. | 
| [75] | DOO S H, SMITH G, and BAKER C. Target classification performance as a function of measurement uncertainty[C]. 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 587–590. doi:  10.1109/APSAR.2015.7306277. | 
| [76] | KWAK Y, SONG W J, and KIM S E. Speckle-noise-invariant convolutional neural network for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(4): 549–553. doi:  10.1109/LGRS.2018.2877599. | 
| [77] | YANG Minjia, BAI Xueru, WANG Li, et al. Mixed loss graph attention network for few-shot SAR target classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216613. doi:  10.1109/TGRS.2021.3124336. | 
| [78] | LI Weijie, YANG Wei, ZHANG Wenpeng, et al. Hierarchical disentanglement-alignment network for robust SAR vehicle recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9661–9679. doi:  10.1109/JSTARS.2023.3324182. | 
| [79] | DING Baiyuan and WEN Gongjian. Exploiting multi-view SAR images for robust target recognition[J]. Remote Sensing, 2017, 9(11): 1150. doi:  10.3390/rs9111150. | 
| [80] | LV Junya and LIU Yue. Data augmentation based on attributed scattering centers to train robust CNN for SAR ATR[J]. IEEE Access, 2019, 7: 25459–25473. doi:  10.1109/ACCESS.2019.2900522. | 
| [81] | CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53–65. doi:  10.1109/MSP.2017.2765202. | 
| [82] | AUER S, BAMLER R, and REINARTZ P. RaySAR-3D SAR simulator: Now open source[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 6730–6733. doi:  10.1109/IGARSS.2016.7730757. | 
| [83] | GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi:  10.1109/8.785750. | 
| [84] | BEN-DAVID S, BLITZER J, CRAMMER K,    et al. Analysis of representations for domain adaptation[M]. SCHÖLKOPF B, PLATT J, and HOFMANN T. Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference. Cambridge: The MIT Press, 2007, 19: 137–144. doi:  10.7551/mitpress/7503.003.0022. | 
| [85] | MORENO-TORRES J G, RAEDER T, ALAIZ-RODRíGUEZ R, et al. A unifying view on dataset shift in classification[J]. Pattern Recognition, 2012, 45(1): 521–530. doi:  10.1016/j.patcog.2011.06.019. | 
| [86] | BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine Learning, 2010, 79(1/2): 151–175. doi:  10.1007/s10994-009-5152-4. | 
| [87] | LONG Mingsheng, CAO Yue, CAO Zhangjie, et al. Transferable representation learning with deep adaptation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 3071–3085. doi:  10.1109/TPAMI.2018.2868685. | 
| [88] | SUN Baochen and SAENKO K. Deep CORAL: Correlation alignment for deep domain adaptation[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 443–450. doi:  10.1007/978-3-319-49409-8_35. | 
| [89] | ZELLINGER W, GRUBINGER T, LUGHOFER E,    et al. Central moment discrepancy (CMD) for domain-invariant representation learning[C]. 5th International Conference on Learning Representations, Toulon, France, 2017. | 
| [90] | GANIN Y and LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]. The 32nd International Conference on Machine Learning, Lile, France, 2015: 1180–1189. | 
| [91] | SHEN Jian, QU Yanru, ZHANG Weinan,    et al. Wasserstein distance guided representation learning for domain adaptation[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 4058–4065. doi:  10.1609/aaai.v32i1.11784. | 
| [92] | GHIFARY M, KLEIJN W B, ZHANG Mengjie,    et al. Domain generalization for object recognition with multi-task autoencoders[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 2551–2559. doi:  10.1109/iccv.2015.293. | 
| [93] | LI Da, ZHANG Jianshu, YANG Yongxin,    et al. Episodic training for domain generalization[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 1446–1455. doi:  10.1109/iccv.2019.00153. | 
| [94] | ZHOU Kaiyang, YANG Yongxin, CAVALLARO A, et al. Learning generalisable omni-scale representations for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5056–5069. doi:  10.1109/TPAMI.2021.3069237. | 
| [95] | SHAO Rui, LAN Xiangyuan, LI Jiawei,    et al. Multi-adversarial discriminative deep domain generalization for face presentation attack detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10015–10023. doi:  10.1109/CVPR.2019.01026. | 
| [96] | WANG Zhen, WANG Qiansheng, LV Chengguo,    et al. Unseen target stance detection with adversarial domain generalization[C]. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020: 1–8. doi:  10.1109/IJCNN48605.2020.9206635. | 
| [97] | 李理, 孙玉林, 曹然, 等. 基于联合分布适配的水下声源测距算法研究[J]. 电子与信息学报, 2022, 44(6): 2061–2070. doi:  10.11999/JEIT211418. LI Li, SUN Yulin, CAO Ran, et al. Research on underwater source ranging algorithm based on joint distribution adaptation[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2061–2070. doi:  10.11999/JEIT211418. | 
| [98] | 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515–548. doi:  10.16383/j.aas.c200238. FAN Cangning, LIU Peng, XIAO Ting, et al. A review of deep domain adaptation: General situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515–548. doi:  10.16383/j.aas.c200238. | 
| [99] | ZHANG Lei and GAO Xinbo. Transfer adaptation learning: A decade survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 23–44. doi:  10.1109/TNNLS.2022.3183326. | 
| [100] | ZHANG Wei, ZHU Yongfeng, and FU Qiang. Adversarial deep domain adaptation for multi-band SAR images classification[J]. IEEE Access, 2019, 7: 78571–78583. doi:  10.1109/ACCESS.2019.2922844. | 
| [101] | ZHANG Yukun, GUO Xiansheng, LEUNG H,    et al. Transfer learning with shared and specific structures for SAR target recognition[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1003–1006. doi:  10.1109/IGARSS46834.2022.9883216. | 
| [102] | CHEN Ting, KORNBLITH S, NOROUZI M,    et al. A simple framework for contrastive learning of visual representations[C]. The 37th International Conference on Machine Learning, 2020: 1597–1607. | 
| [103] | ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. Active learning SAR image classification method crossing different imaging platforms[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4514105. doi:  10.1109/LGRS.2022.3208468. | 
| [104] | ZHAO Siyuan, XU Yin, LUO Ying,    et al. A domain adaptation network for cross-imaging satellites sar image ship classification[C]. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1580–1583. doi:  10.1109/IGARSS46834.2022.9883273. | 
| [105] | ZHAO Siyuan, ZHANG Zenghui, ZHANG Tao, et al. Transferable SAR image classification crossing different satellites under open set condition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4506005. doi:  10.1109/LGRS.2022.3159179. | 
| [106] | GU Xiang, SUN Jian, and XU Zongben. Spherical space domain adaptation with robust pseudo-label loss[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9098–9107. doi:  10.1109/CVPR42600.2020.00912. | 
| [107] | GAO Zhiqiang, ZHANG Shufei, HUANG Kaizhu,    et al. Gradient distribution alignment certificates better adversarial domain adaptation[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8917–8926. doi:  10.1109/ICCV48922.2021.00881. | 
| [108] | ZOU Bin, QIN Jiang, and ZHANG Lamei. Cross-scene target detection based on feature adaptation and uncertainty-aware pseudo-label learning for high resolution SAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 200: 173–190. doi:  10.1016/j.isprsjprs.2023.05.009. | 
| [109] | SHI Yu, DU Lan, and GUO Yuchen. Unsupervised domain adaptation for SAR target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6372–6385. doi:  10.1109/JSTARS.2021.3089238. | 
| [110] | ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. A feature decomposition-based method for automatic ship detection crossing different satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5234015. doi:  10.1109/TGRS.2022.3201628. | 
| [111] | ZHAO Siyuan, ZHANG Zenghui, GUO Weiwei, et al. An automatic ship detection method adapting to different satellites SAR images with feature alignment and compensation loss[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225217. doi:  10.1109/TGRS.2022.3160727. | 
| [112] | ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. A domain specific knowledge extraction transformer method for multisource satellite-borne SAR images ship detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 16–29. doi:  10.1016/j.isprsjprs.2023.02.011. | 
| [113] | ROSTAMI M, KOLOURI S, EATON E, et al. Deep transfer learning for few-shot SAR image classification[J]. Remote Sensing, 2019, 11(11): 1374. doi:  10.3390/rs11111374. | 
| [114] | SONG Yucheng, LI Jingrun, GAO Peng, et al. Two-stage cross-modality transfer learning method for military-civilian SAR ship recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4506405. doi:  10.1109/LGRS.2022.3162707. | 
| [115] | ZHAO Shuangmei and LANG Haitao. Improving deep subdomain adaptation by dual-branch network embedding attention module for SAR ship classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 8038–8048. doi:  10.1109/JSTARS.2022.3206753. | 
| [116] | GUO Yuchen, DU Lan, and LYU Guoxin. SAR target detection based on domain adaptive faster R-CNN with small training data size[J]. Remote Sensing, 2021, 13(21): 4202. doi:  10.3390/rs13214202. | 
| [117] | ZHANG Jun, LI Simin, DONG Yongfeng, et al. Hierarchical similarity alignment for domain adaptive ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5240611. doi:  10.1109/TGRS.2022.3227626. | 
| [118] | ZHANG Yukun, GUO Xiansheng, LI Lin, et al. Deep knowledge integration of heterogeneous features for domain adaptive SAR target recognition[J]. Pattern Recognition, 2022, 126: 108590. doi:  10.1016/j.patcog.2022.108590. | 
| [119] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi:  10.1109/TPAMI.2016.2577031. | 
| [120] | LEI Zhengxin, XU Feng, WEI Jiangtao,    et al. SAR-NeRF: Neural radiance fields for synthetic aperture radar multi-view representation[EB/OL]. https://arxiv.org/abs/2307.05087, 2023. | 
| [121] | FU Shilei and XU Feng. Differentiable SAR renderer and image-based target reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 6679–6693. doi:  10.1109/TIP.2022.3215069. | 
| [122] | 仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi:  10.12000/JR22027. QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi:  10.12000/JR22027. | 
| [123] | CHANG Yupeng, WANG Xu, WANG Jindong, et al. A survey on evaluation of large language models[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(3): 39. doi:  10.1145/3641289. | 
| [124] | KIRILLOV A, MINTUN E, RAVI N,    et al. Segment anything[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 3992–4003. doi:  10.1109/ICCV51070.2023.00371. | 
| [125] | WOOLLARD M, BLACKNELL D, GRIFFITHS H, et al. SARCASTIC v2.0—high-performance SAR simulation for next-generation ATR systems[J]. Remote Sensing, 2022, 14(11): 2561. doi:  10.3390/rs14112561. | 
| [126] | 董纯柱, 胡利平, 朱国庆, 等. 地面车辆目标高质量SAR图像快速仿真方法[J]. 雷达学报, 2015, 4(3): 351–360. doi:  10.12000/JR15057. DONG Chunzhu, HU Liping, ZHU Guoqing et al. Efficient simulation method for high quality SAR images of complex ground vehicles[J]. Journal of Radars, 2015, 4(3): 351–360. doi:  10.12000/JR15057. | 
| [127] | NIU Shengren, QIU Xiaolan, LEI Bin, et al. A SAR target image simulation method with DNN embedded to calculate electromagnetic reflection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2593–2610. doi:  10.1109/JSTARS.2021.3056920. | 
| [128] | WEI Jiangtao, LUOMEI Yixiang, ZHANG Xu,    et al. Learning surface scattering parameters from SAR images using differentiable ray tracing[EB/OL]. https://arxiv.org/abs/2401.01175, 2024. | 
| [129] | LV Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-aided SAR target classification via dual-branch reconstruction and subdomain alignment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5214414. doi:  10.1109/TGRS.2023.3305094. | 
| [130] | SHI Yu, DU Lan, LI Chen, et al. Unsupervised domain adaptation for SAR target classification based on domain- and class-level alignment: From simulated to real data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 207: 1–13. doi:  10.1016/j.isprsjprs.2023.11.010. | 
| [131] | GUO Qian, XU Huilin, and XU Feng. Causal adversarial autoencoder for disentangled SAR image representation and few-shot target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5221114. doi:  10.1109/TGRS.2023.3330478. | 
| [132] | LI Weijie, YANG Wei, LIU Li, et al. Discovering and explaining the noncausality of deep learning in SAR ATR[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4004605. doi:  10.1109/LGRS.2023.3266493. | 
| [133] | LIU Jiaxiang, LIU Zhunga, ZHANG Zuowei,    et al. A new causal inference framework for SAR target recognition[J]. IEEE Transactions on Artificial Intelligence, 2024: 1–15. doi:  10.1109/TAI.2024.3357664. | 
