Citation: | LIU Zhuang, SONG Xiangrui, ZHAO Sihuan, SHI Ya, YANG Dengfeng. EvolveNet: Adaptive Self-Supervised Continual Learning without Prior Knowledge[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3256-3266. doi: 10.11999/JEIT240142 |
[1] |
MEHTA S V, PATIL D, CHANDAR S, et al. An empirical investigation of the role of pre-training in lifelong learning[J]. The Journal of Machine Learning Research, 2023, 24(1): 214.
|
[2] |
BAKER M M, NEW A, AGUILAR-SIMON M, et al. A domain-agnostic approach for characterization of lifelong learning systems[J]. Neural Networks, 2023, 160: 274–296. doi: 10.1016/j.neunet.2023.01.007.
|
[3] |
PURUSHWALKAM S, MORGADO P, and GUPTA A. The challenges of continuous self-supervised learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 702–721. doi: 10.1007/978-3-031-19809-0_40.
|
[4] |
GRAUMAN K, WESTBURY A, BYRNE E, et al. Ego4D: Around the world in 3, 000 hours of egocentric video[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 18995–19012. doi: 10.1109/CVPR52688.2022.01842.
|
[5] |
DE LANGE M and TUYTELAARS T. Continual prototype evolution: Learning online from non-stationary data streams[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8250–8259. doi: 10.1109/ICCV48922.2021.00814.
|
[6] |
VERWIMP E, YANG Kuo, PARISOT S, et al. Re-examining distillation for continual object detection[J]. arXiv: 2204.01407, 2022.
|
[7] |
SUN Yu, WANG Xiaolong, LIU Zhuang, et al. Test-time training with self-supervision for generalization under distribution shifts[C]. The 37th International Conference on Machine Learning, 2020: 9229–9248.
|
[8] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
|
[9] |
WANG Xin, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[J]. arXiv: 2003.06957, 2020.
|
[10] |
WU Jiaxi, LIU Songtao, HUANG Di, et al. Multi-scale positive sample refinement for few-shot object detection[C]. The 16th European Conference, Glasgow, UK, 2020: 456–472. doi: 10.1007/978-3-030-58517-4_27.
|
[11] |
BRAHMA D and RAI P. A probabilistic framework for lifelong test-time adaptation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 3582–3591. doi: 10.1109/CVPR52729.2023.00349.
|
[12] |
YAN Xiaopeng, CHEN Ziliang, XU Anni, et al. Meta R-CNN: Towards general solver for instance-level low-shot learning[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9577–9586. doi: 10.1109/ICCV.2019.00967.
|
[13] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 5351–5359. doi: 10.1109/CVPR.2009.5206848.
|
[14] |
MENEZES A G, DE MOURA G, ALVES C, et al. Continual object detection: A review of definitions, strategies, and challenges[J]. Neural Networks, 2023, 161: 476–493. doi: 10.1016/j.neunet.2023.01.041.
|
[15] |
LOMONACO V, PELLEGRINI L, RODRIGUEZ P, et al. CVPR 2020 continual learning in computer vision competition: Approaches, results, current challenges and future directions[J]. Artificial Intelligence, 2022, 303: 103635. doi: 10.1016/j.artint.2021.103635.
|
[16] |
GRAFFIETI G, BORGHI G, and MALTONI D. Continual learning in real-life applications[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6195–6202. doi: 10.1109/LRA.2022.3167736.
|
[17] |
BAE H, BROPHY E, CHAN R H M, et al. IROS 2019 lifelong robotic vision: Object recognition challenge [competitions][J]. IEEE Robotics & Automation Magazine, 2020, 27(2): 11–16. doi: 10.1109/MRA.2020.2987186.
|
[18] |
VERWIMP E, YANG Kuo, PARISOT S, et al. CLAD: A realistic continual learning benchmark for autonomous driving[J]. Neural Networks, 2023, 161: 659–669. doi: 10.1016/j.neunet.2023.02.001.
|
[19] |
SARFRAZ F, ARANI E, and ZONOOZ B. Sparse coding in a dual memory system for lifelong learning[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 9714–9722. doi: 10.1609/aaai.v37i8.26161.
|
[20] |
MISHRA R and SURI M. A survey and perspective on neuromorphic continual learning systems[J]. Frontiers in Neuroscience, 2023, 17: 1149410. doi: 10.3389/fnins.2023.1149410.
|
[21] |
WANG Yuxiong, RAMANAN D, and HEBERT M. Meta-learning to detect rare objects[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9925–9934. doi: 10.1109/ICCV.2019.01002.
|
[22] |
ZHU Chenchen, CHEN Fangyi, AHMED U, et al. Semantic relation reasoning for shot-stable few-shot object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 8782–8791. doi: 10.1109/CVPR46437.2021.00867.
|
[23] |
YPSILANTIS N A, GARCIA N, HAN Guangxing, et al. The met dataset: Instance-level recognition for artworks[C]. The 1st Neural Information Processing Systems Track on Datasets and Benchmarks, 2021.
|
[24] |
QIAO Limeng, ZHAO Yuxuan, LI Zhiyuan, et al. DeFRCN: Decoupled faster R-CNN for few-shot object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8681–8690. doi: 10.1109/ICCV48922.2021.00856.
|
[25] |
CHU Zhixuan, LI Ruopeng, RATHBUN S, et al. Continual causal inference with incremental observational data[C]. 2023 IEEE 39th International Conference on Data Engineering, Anaheim, USA, 2023: 3430–3439. doi: 10.1109/ICDE55515.2023.00263.
|
[26] |
DAMEN D, DOUGHTY H, FARINELLA G M, et al. The EPIC-KITCHENS dataset: Collection, challenges and baselines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4125–4141. doi: 10.1109/TPAMI.2020.2991965.
|
[27] |
杨静, 何瑶, 李斌, 等. 基于门控机制与重放策略的持续语义分割方法[J]. 电子与信息学报, 2022. doi: 10.11999/JEIT230803.
YANG Jing, HE Yao, LI Bin, et al. A continual semantic segmentation method based on gating mechanism and replay strategy[J]. Journal of Electronics & Information Technology, 2022. doi: 10.11999/JEIT230803.
|
[28] |
JEONG J, LEE S, KIM J, et al. Consistency-based semi-supervised learning for object detection[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 965.
|
[29] |
张立民, 谭凯文, 闫文君, 等. 基于持续学习和联合特征提取的特定辐射源识别[J]. 电子与信息学报, 2023, 45(1): 308–316. doi: 10.11999/JEIT211176.
ZHANG Limin, TAN Kaiwen, YAN Wenjun, et al. Specific emitter identification based on continuous learning and joint feature extraction[J]. Journal of Electronics & Information Technology, 2023, 45(1): 308–316. doi: 10.11999/JEIT211176.
|
[30] |
OSTAPENKO O. Continual learning via local module composition[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 30298–30312.
|
[31] |
XU Mengde, ZHANG Zheng, HU Han, et al. End-to-end semi-supervised object detection with soft teacher[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3060–3069. doi: 10.1109/ICCV48922.2021.00305.
|
[32] |
SHE Qi, FENG Fan, HAO Xinyue, et al. OpenLORIS-Object: A robotic vision dataset and benchmark for lifelong deep learning[C]. 2020 IEEE International Conference on Robotics and Automation, Paris, France, 2020: 4767–4773. doi: 10.1109/ICRA40945.2020.9196887.
|
[33] |
KANG Bingyi, LIU Zhuang, WANG Xin, et al. Few-shot object detection via feature reweighting[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8420–8429. doi: 10.1109/ICCV.2019.00851.
|