Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LIU Zhuang, SONG Xiangrui, ZHAO Sihuan, SHI Ya, YANG Dengfeng. EvolveNet: Adaptive Self-Supervised Continual Learning without Prior Knowledge[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3256-3266. doi: 10.11999/JEIT240142
Citation: LIU Zhuang, SONG Xiangrui, ZHAO Sihuan, SHI Ya, YANG Dengfeng. EvolveNet: Adaptive Self-Supervised Continual Learning without Prior Knowledge[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3256-3266. doi: 10.11999/JEIT240142

EvolveNet: Adaptive Self-Supervised Continual Learning without Prior Knowledge

doi: 10.11999/JEIT240142 cstr: 32379.14.JEIT240142
Funds:  The National Natural Science Foundation of China (72272028)
  • Received Date: 2024-03-06
  • Rev Recd Date: 2024-05-14
  • Available Online: 2024-05-22
  • Publish Date: 2024-08-30
  • Unsupervised Continual Learning (UCL) refers to the ability to learn over time while remembering previous patterns without supervision. Although significant progress has been made in this direction, existing works often assume strong prior knowledge about forthcoming data (e.g., knowing class boundaries), which may not be obtainable in complex and unpredictable open environments. Inspired by real-world scenarios, a more practical problem setting called unsupervised online continual learning without prior knowledge is proposed in this paper. The proposed setting is challenging because the data are non-i.i.d. and lack external supervision or prior knowledge. To address these challenges, a method called EvolveNet is intriduced, which is an adaptive unsupervised continual learning approach capable of purely extracting and memorizing representations from data streams. EvolveNet is designed around three main components: adversarial pseudo-supervised learning loss, self-supervised forgetting loss, and online memory update for uniform subset selection. The design of these three components aims to synergize and maximize learning performance. We conduct comprehensive experiments on five public datasets with EvolveNet. The results show that EvolveNet outperforms existing algorithms in all settings, achieving significantly improved accuracy on CIFAR-10, CIFAR-100, and TinyImageNet datasets, as well as performing best on the multimodal datasets Core-50 and iLab-20M for incremental learning. The cross-dataset generalization experiments are also conducted, demonstrating EvolveNet’s robustness in generalization. Finally, we open-source the EvolveNet model and core code on GitHub, facilitating progress in unsupervised continual learning and providing a useful tool and platform for the research community.
  • loading
  • [1]
    MEHTA S V, PATIL D, CHANDAR S, et al. An empirical investigation of the role of pre-training in lifelong learning[J]. The Journal of Machine Learning Research, 2023, 24(1): 214.
    [2]
    BAKER M M, NEW A, AGUILAR-SIMON M, et al. A domain-agnostic approach for characterization of lifelong learning systems[J]. Neural Networks, 2023, 160: 274–296. doi: 10.1016/j.neunet.2023.01.007.
    [3]
    PURUSHWALKAM S, MORGADO P, and GUPTA A. The challenges of continuous self-supervised learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 702–721. doi: 10.1007/978-3-031-19809-0_40.
    [4]
    GRAUMAN K, WESTBURY A, BYRNE E, et al. Ego4D: Around the world in 3, 000 hours of egocentric video[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 18995–19012. doi: 10.1109/CVPR52688.2022.01842.
    [5]
    DE LANGE M and TUYTELAARS T. Continual prototype evolution: Learning online from non-stationary data streams[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8250–8259. doi: 10.1109/ICCV48922.2021.00814.
    [6]
    VERWIMP E, YANG Kuo, PARISOT S, et al. Re-examining distillation for continual object detection[J]. arXiv: 2204.01407, 2022.
    [7]
    SUN Yu, WANG Xiaolong, LIU Zhuang, et al. Test-time training with self-supervision for generalization under distribution shifts[C]. The 37th International Conference on Machine Learning, 2020: 9229–9248.
    [8]
    CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [9]
    WANG Xin, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[J]. arXiv: 2003.06957, 2020.
    [10]
    WU Jiaxi, LIU Songtao, HUANG Di, et al. Multi-scale positive sample refinement for few-shot object detection[C]. The 16th European Conference, Glasgow, UK, 2020: 456–472. doi: 10.1007/978-3-030-58517-4_27.
    [11]
    BRAHMA D and RAI P. A probabilistic framework for lifelong test-time adaptation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 3582–3591. doi: 10.1109/CVPR52729.2023.00349.
    [12]
    YAN Xiaopeng, CHEN Ziliang, XU Anni, et al. Meta R-CNN: Towards general solver for instance-level low-shot learning[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9577–9586. doi: 10.1109/ICCV.2019.00967.
    [13]
    DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 5351–5359. doi: 10.1109/CVPR.2009.5206848.
    [14]
    MENEZES A G, DE MOURA G, ALVES C, et al. Continual object detection: A review of definitions, strategies, and challenges[J]. Neural Networks, 2023, 161: 476–493. doi: 10.1016/j.neunet.2023.01.041.
    [15]
    LOMONACO V, PELLEGRINI L, RODRIGUEZ P, et al. CVPR 2020 continual learning in computer vision competition: Approaches, results, current challenges and future directions[J]. Artificial Intelligence, 2022, 303: 103635. doi: 10.1016/j.artint.2021.103635.
    [16]
    GRAFFIETI G, BORGHI G, and MALTONI D. Continual learning in real-life applications[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6195–6202. doi: 10.1109/LRA.2022.3167736.
    [17]
    BAE H, BROPHY E, CHAN R H M, et al. IROS 2019 lifelong robotic vision: Object recognition challenge [competitions][J]. IEEE Robotics & Automation Magazine, 2020, 27(2): 11–16. doi: 10.1109/MRA.2020.2987186.
    [18]
    VERWIMP E, YANG Kuo, PARISOT S, et al. CLAD: A realistic continual learning benchmark for autonomous driving[J]. Neural Networks, 2023, 161: 659–669. doi: 10.1016/j.neunet.2023.02.001.
    [19]
    SARFRAZ F, ARANI E, and ZONOOZ B. Sparse coding in a dual memory system for lifelong learning[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 9714–9722. doi: 10.1609/aaai.v37i8.26161.
    [20]
    MISHRA R and SURI M. A survey and perspective on neuromorphic continual learning systems[J]. Frontiers in Neuroscience, 2023, 17: 1149410. doi: 10.3389/fnins.2023.1149410.
    [21]
    WANG Yuxiong, RAMANAN D, and HEBERT M. Meta-learning to detect rare objects[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9925–9934. doi: 10.1109/ICCV.2019.01002.
    [22]
    ZHU Chenchen, CHEN Fangyi, AHMED U, et al. Semantic relation reasoning for shot-stable few-shot object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 8782–8791. doi: 10.1109/CVPR46437.2021.00867.
    [23]
    YPSILANTIS N A, GARCIA N, HAN Guangxing, et al. The met dataset: Instance-level recognition for artworks[C]. The 1st Neural Information Processing Systems Track on Datasets and Benchmarks, 2021.
    [24]
    QIAO Limeng, ZHAO Yuxuan, LI Zhiyuan, et al. DeFRCN: Decoupled faster R-CNN for few-shot object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8681–8690. doi: 10.1109/ICCV48922.2021.00856.
    [25]
    CHU Zhixuan, LI Ruopeng, RATHBUN S, et al. Continual causal inference with incremental observational data[C]. 2023 IEEE 39th International Conference on Data Engineering, Anaheim, USA, 2023: 3430–3439. doi: 10.1109/ICDE55515.2023.00263.
    [26]
    DAMEN D, DOUGHTY H, FARINELLA G M, et al. The EPIC-KITCHENS dataset: Collection, challenges and baselines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4125–4141. doi: 10.1109/TPAMI.2020.2991965.
    [27]
    杨静, 何瑶, 李斌, 等. 基于门控机制与重放策略的持续语义分割方法[J]. 电子与信息学报, 2022. doi: 10.11999/JEIT230803.

    YANG Jing, HE Yao, LI Bin, et al. A continual semantic segmentation method based on gating mechanism and replay strategy[J]. Journal of Electronics & Information Technology, 2022. doi: 10.11999/JEIT230803.
    [28]
    JEONG J, LEE S, KIM J, et al. Consistency-based semi-supervised learning for object detection[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 965.
    [29]
    张立民, 谭凯文, 闫文君, 等. 基于持续学习和联合特征提取的特定辐射源识别[J]. 电子与信息学报, 2023, 45(1): 308–316. doi: 10.11999/JEIT211176.

    ZHANG Limin, TAN Kaiwen, YAN Wenjun, et al. Specific emitter identification based on continuous learning and joint feature extraction[J]. Journal of Electronics & Information Technology, 2023, 45(1): 308–316. doi: 10.11999/JEIT211176.
    [30]
    OSTAPENKO O. Continual learning via local module composition[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 30298–30312.
    [31]
    XU Mengde, ZHANG Zheng, HU Han, et al. End-to-end semi-supervised object detection with soft teacher[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3060–3069. doi: 10.1109/ICCV48922.2021.00305.
    [32]
    SHE Qi, FENG Fan, HAO Xinyue, et al. OpenLORIS-Object: A robotic vision dataset and benchmark for lifelong deep learning[C]. 2020 IEEE International Conference on Robotics and Automation, Paris, France, 2020: 4767–4773. doi: 10.1109/ICRA40945.2020.9196887.
    [33]
    KANG Bingyi, LIU Zhuang, WANG Xin, et al. Few-shot object detection via feature reweighting[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8420–8429. doi: 10.1109/ICCV.2019.00851.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (352) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return