Citation: | CHEN Jian, YONG Qifeng, DU Lan, YIN Linwei. An Open Set Recognition Method for SAR Targets Combining Unknown Feature Generation and Classification Score Modification[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3890-3907. doi: 10.11999/JEIT240138 |
[1] |
金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083.
JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083.
|
[2] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94.
|
[3] |
李璐, 杜兰, 何浩男, 等. 基于深度森林的多级特征融合SAR目标识别[J]. 电子与信息学报, 2021, 43(3): 606–614. doi: 10.11999/JEIT200685.
LI Lu, DU Lan, HE Haonan, et al. Multi-level feature fusion SAR automatic target recognition based on deep forest[J]. Journal of Electronics & Information Technology, 2021, 43(3): 606–614. doi: 10.11999/JEIT200685.
|
[4] |
LIN Huiping, WANG Haipeng, XU Feng, et al. Target recognition for SAR images enhanced by polarimetric information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5204516. doi: 10.1109/TGRS.2024.3361931.
|
[5] |
ZENG Zhiqiang, SUN Jinping, YAO Xianxun, et al. SAR target recognition via information dissemination networks[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 7019–7022. doi: 10.1109/IGARSS52108.2023.10282727.
|
[6] |
MENDES JÚNIOR P R, DE SOUZA R M, DE O. WERNECK R, et al. Nearest neighbors distance ratio open-set classifier[J]. Machine Learning, 2017, 106(3): 359–386. doi: 10.1007/s10994-016-5610-8.
|
[7] |
XIA Ziheng, WANG Penghui, DONG Ganggang, et al. Radar HRRP open set recognition based on extreme value distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5102416. doi: 10.1109/TGRS.2023.3257879.
|
[8] |
YANG Hongming, ZHANG Xuyao, YIN Fei, et al. Convolutional prototype network for open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2358–2370. doi: 10.1109/TPAMI.2020.3045079.
|
[9] |
LU Jing, XU Yunlu, LI Hao, et al. PMAL: Open set recognition via robust prototype mining[C]. The 36th AAAI Conference on Artificial Intelligence, Vancouver, British Columbia Canada, 2022: 1872–1880. doi: 10.1609/aaai.v36i2.20081.
|
[10] |
HUANG Hongzhi, WANG Yu, HU Qinghua, et al. Class-specific semantic reconstruction for open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4214–4228. doi: 10.1109/TPAMI.2022.3200384.
|
[11] |
XIA Ziheng, WANG Penghui, DONG Ganggang, et al. Adversarial kinetic prototype framework for open set recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 9238–9251. doi: 10.1109/TNNLS.2022.3231924.
|
[12] |
MOON W J, PARK J, SEONG H S, et al. Difficulty-aware simulator for open set recognition[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 365–381. doi: 10.1007/978-3-031-19806-9_21.
|
[13] |
ENGELBRECHT E R and DU PREEZ J A. On the link between generative semi-supervised learning and generative open-set recognition[J]. Scientific African, 2023, 22: e01903. doi: 10.1016/j.sciaf.2023.e01903.
|
[14] |
DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Open set SAR target recognition using class boundary extracting[C]. The 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 2019: 1–4. doi: 10.1109/APSAR46974.2019.9048316.
|
[15] |
GENG Xiaojing, DONG Ganggang, XIA Ziheng, et al. SAR target recognition via random sampling combination in open-world environments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 331–343. doi: 10.1109/JSTARS.2022.3225882.
|
[16] |
LI Yue, REN Haohao, YU Xuelian, et al. Threshold-free open-set learning network for SAR automatic target recognition[J]. IEEE Sensors Journal, 2024, 24(5): 6700–6708. doi: 10.1109/JSEN.2024.3354966.
|
[17] |
XIA Ziheng, WANG Penghui, DONG Ganggang, et al. Spatial location constraint prototype loss for open set recognition[J]. Computer Vision and Image Understanding, 2023, 229: 103651. doi: 10.1016/j.cviu.2023.103651.
|
[18] |
HE Kaiming, ZHANG Xiangyu, REN Shaoping, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[19] |
ZHANG Hongyi, CISSÉ M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[20] |
FISHER R A and TIPPETT L H C. Limiting forms of the frequency distribution of the largest or smallest member of a sample[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24(2): 180–190. doi: 10.1017/S0305004100015681.
|
[21] |
ROSS T D, WORRELL S W, VELTEN V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]. SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V, Orlando, USA, 1998. doi: 10.1117/12.321859.
|
[22] |
SCHEIRER W J, DE REZENDE ROCHA A, SAPKOTA A, et al. Toward open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1757–1772. doi: 10.1109/TPAMI.2012.256.
|
[23] |
CHEN Guangyao, QIAO Limeng, SHI Yemin, et al. Learning open set network with discriminative reciprocal points[C]. The Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 2020: 507–522. doi: 10.1007/978-3-030-58580-8_30.
|