Advanced Search
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
ZHOU Cheng, LIN Qian, MA Congshan, YING Tao, MAN Xin. Intelligent Decision-making for Selection of Communication Jamming Channel and Power[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3957-3965. doi: 10.11999/JEIT240100
Citation: ZHOU Cheng, LIN Qian, MA Congshan, YING Tao, MAN Xin. Intelligent Decision-making for Selection of Communication Jamming Channel and Power[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3957-3965. doi: 10.11999/JEIT240100

Intelligent Decision-making for Selection of Communication Jamming Channel and Power

doi: 10.11999/JEIT240100
Funds:  The National Natural Science Foundation of China (61501484)
  • Received Date: 2024-02-26
  • Rev Recd Date: 2024-10-01
  • Available Online: 2024-10-09
  • Publish Date: 2024-10-30
  • Intelligent jamming is a technique that utilizes environmental feedback information and autonomous learning of jamming strategies to effectively disrupt the communication links of the enemy. However, most existing research on intelligent jamming assumes that jammers can directly access the feedback of communication quality indicators, such as bit error rate or packet loss rate. This assumption is difficult to achieve in practical adversarial environments, thus limiting the applicability of intelligent jamming. To address this issue, the communication jamming problem is modeled as a Markov Decision Process (MDP), and by considering both the fundamental principles of jamming and the dynamic behavior of communication objectives, an Improved Policy Hill-Climbing (IPHC) algorithm is proposed. This algorithm follows an OODA loop of “Observe-Orient-Decide-Act”, continuously observes the changes of communication objectives in real time, flexibly adjusts jamming strategies, and applies a mixed strategy decision-making to execute communication jamming. Simulation results demonstrate that when the communication objectives adopt deterministic evasion strategies, the proposed algorithm can quickly converge to the optimal jamming strategy, and the convergence time is at least two-thirds shorter than that of the Q-learning algorithm. When the communication objectives switch evasion strategies, the algorithm can adaptively learn and readjust to the optimal jamming strategy. In the case of communication objectives using mixed evasion strategies, the proposed algorithm also achieves fast convergence and obtains superior jamming effects.
  • loading
  • [1]
    HAN Hao, XU Yifan, JIN Zhu, et al. Primary-User-Friendly Dynamic Spectrum Anti-Jamming Access: A GAN-Enhanced Deep Reinforcement Learning Approach[J]. IEEE Wireless Communications Letters, 2022, 11(2): 258–262. doi: 10.1109/LWC.2021.3125337.
    [2]
    NI Gang, HE Chong, JIN Ronghong. Single-Channel Anti-Jamming Receiver With Harmonic-Based Space-Time Adaptive Processing[J]. IEEE Wireless Communications Letters, 2022, 11(4): 776–780. doi: 10.1109/LWC.2022.3143505.
    [3]
    ZHU Xinyu, HUANG Yang, WANG Shaoyu, et al. Dynamic Spectrum Anti-Jamming With Reinforcement Learning Based on Value Function Approximation[J]. IEEE Wireless Communications Letters, 2023, 12(2): 386–390. doi: 10.1109/LWC.2022.3228045.
    [4]
    汪志勇, 张沪寅, 徐宁, 等. 认知无线电网络中基于随机学习博弈的信道分配与功率控制[J]. 电子学报, 2018, 46(12): 2870–2877. doi: 10.3969/j.issn.0372-2112.2018.12.008.

    WANG Zhiyong, ZHANG Huyin, XU Ning, et al. Channel assignment and power control based on stochastic learning game in cognitive radio networks[J]. Acta electronica sinica, 2018, 46(12): 2870–2877. doi: 10.3969/j.issn.0372-2112.2018.12.008.
    [5]
    饶宁, 许华, 蒋磊, 等. 基于多智能体深度强化学习的分布式协同干扰功率分配算法[J]. 电子学报, 2022, 50(6): 1319–1330. doi: 10.12263/DZXB.20210818.

    RAO Ning, XU Hua, JIANG Lei, et al. Allocation algorithm of distributed cooperative jamming power based on multi-agent deep reinforcement learning[J]. Acta electronica sinica, 2022, 50(6): 1319–1330. doi: 10.12263/DZXB.20210818.
    [6]
    宋佰霖, 许华, 齐子森, 等. 一种基于深度强化学习的协同通信干扰决策算法[J]. 电子学报, 2022, 50(6): 1301–1309. doi: 10.12263/DZXB.20210814.

    SONG Bailin, XU Hua, QI Ziseng, et al. A collaborative communication jamming decision algorithm based on deep reinforcement learning[J]. Acta electronica sinica, 2022, 50(6): 1301–1309. doi: 10.12263/DZXB.20210814.
    [7]
    AMURU S, TEKIN C, SCHAAR M V D, et al. Jamming Bandits—A Novel Learning Method for Optimal Jamming[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2792–2808. doi: 10.1109/TWC.2015.2510643.
    [8]
    ZHUANSUN Shaoshuai, YANG Junan, LIU Hui, et al. A novel jamming strategy-greedy bandit[C]. Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN). Guangzhou, China: IEEE, 2017: 1142-1146. doi: 10.1109/ICCSN.2017.8230289.
    [9]
    张君毅, 张冠杰, 杨鸿杰. 针对未知通信目标的干扰策略智能生成方法研究[J]. 电子测量技术, 2019, 42(16): 148–153. doi: 10.19651/j.cnki.emt.1903103.

    ZHANG Junyi, ZHANG Guanjie, YANG Hongjie. Research on intelligent interference strategy generation method for unknown communication target[J]. Electronic measurement technology, 2019, 42(16): 148–153. doi: 10.19651/j.cnki.emt.1903103.
    [10]
    ZHUANSUN Shaoshuai, YANG Junan, LIU Hui. An algorithm for jamming strategy using OMP and MAB[J]. EURASIP Journal on Wireless Communications and Networking, 2019(1): 85–95. doi: 10.1186/s13638-019-1414-4.
    [11]
    颛孙少帅, 杨俊安, 刘辉, 等. 采用双层强化学习的干扰决策算法[J]. 西安交通大学学报, 2018, 52(2): 63–69. doi: 10.7652/xjtuxb201802010.

    ZHUANSUN Shaoshuai, YANG Junan, LIU Hui, et al. An algorithm for jamming decision using dual reinforcement learning[J]. Journal of Xi’an jiaotong university, 2018, 52(2): 63–69. doi: 10.7652/xjtuxb201802010.
    [12]
    ZHOU Cheng, MA Congshan, LIN Qian, et al. Intelligent bandit learning for jamming strategy generation[J]. Wireless Networks, 2023, 29(5): 2391–2403. doi: 10.1007/s11276-023-03286-9.
    [13]
    李芳, 熊俊, 赵肖迪, 等. 基于快速强化学习的无线通信干扰规避策略[J]. 电子与信息学报, 2022, 44(11): 3842–3849. doi: 10.11999/JEIT210965.

    LI Fang, XIONG Jun, ZHAO Xiaodi, et al. Wireless communications interference avoidance based on fast reinforcement learning[J]. Journal of electronics and information technology, 2022, 44(11): 3842–3849. doi: 10.11999/JEIT210965.
    [14]
    潘筱茜, 张姣, 刘琰, 等. 基于深度强化学习的多域联合干扰规避[J]. 信号处理, 2022, 38(12): 2572–2581. doi: 10.16798/j.issn.1003-0530.2022.12.012.

    PAN Xiaoqian, ZHANG Jiao, LIU Yan, et al. Multi-domain joint interference avoidance based on deep reinforcement learning[J]. Journal of signal processing, 2022, 38(12): 2572–2581. doi: 10.16798/j.issn.1003-0530.2022.12.012.
    [15]
    TOM V. 9 Reinforcement Learning: The Markov Decision Process Approach[M]. MIT Press. 2021: 133-152.
    [16]
    杨鸿杰, 张君毅. 基于强化学习的智能干扰算法研究[J]. 电子测量技术, 2018, 41(20): 49–54. doi: 10.19651/j.cnki/emt.1802113.

    YANG Hongjie, ZHANG Junyi. Research on intelligent interference algorithm based on reinforcement learning[J]. Electronic measurement technology, 2018, 41(20): 49–54. doi: 10.19651/j.cnki/emt.1802113.
    [17]
    MARTIN A, ANDERS H. Reinforcement Learning[M]. Wiley. 2023: 327-349.
    [18]
    裴绪芳, 陈学强, 吕丽刚, 等. 基于随机森林强化学习的干扰智能决策方法研究[J]. 通信技术, 2019, 52(9): 2118–2124. doi: 10.3969/j.issn.1002-0802.2019.09.009.

    PEI Xufang, CHEN Xueqiang, LV Ligang, et al. Research on jamming intelligent decision-making method based on random forest reinforcement learning[J]. Communications technology, 2019, 52(9): 2118–2124. doi: 10.3969/j.issn.1002-0802.2019.09.009.
    [19]
    张双义, 沈箬怡, 陈学强, 等. 基于强化学习的功率与信道联合干扰方法研究[J]. 通信技术, 2020, 53(8): 1859–1868. doi: 10.3969/j.issn.1002-0802.2020.08.004.

    ZHANG Shuangyi, SHEN Ruoyi, CHEN Xueqiang, et al. Joint jamming method of channel and power based on reinforcement learning[J]. Communications technology, 2020, 53(8): 1859–1868. doi: 10.3969/j.issn.1002-0802.2020.08.004.
    [20]
    BOWLING M, VELOSO M M. Rational and Convergent Learning in Stochastic Games[C]. Proceedings of the International Joint Conference on Artificial Intelligence. Seattle, WA, 2001: 1021-1026.
    [21]
    XU B, ZENG W. A Combat Decision Support Method Based on OODA and Dynamic Graph Reinforcement Learning[C]. Proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC). Hefei, China: IEEE , 2022: 4872-4878. doi: 10.1109/CCDC55256.2022.10033986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (78) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return