Citation: | ZHOU Cheng, LIN Qian, MA Congshan, YING Tao, MAN Xin. Intelligent Decision-making for Selection of Communication Jamming Channel and Power[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3957-3965. doi: 10.11999/JEIT240100 |
[1] |
HAN Hao, XU Yifan, JIN Zhu, et al. Primary-User-Friendly Dynamic Spectrum Anti-Jamming Access: A GAN-Enhanced Deep Reinforcement Learning Approach[J]. IEEE Wireless Communications Letters, 2022, 11(2): 258–262. doi: 10.1109/LWC.2021.3125337.
|
[2] |
NI Gang, HE Chong, JIN Ronghong. Single-Channel Anti-Jamming Receiver With Harmonic-Based Space-Time Adaptive Processing[J]. IEEE Wireless Communications Letters, 2022, 11(4): 776–780. doi: 10.1109/LWC.2022.3143505.
|
[3] |
ZHU Xinyu, HUANG Yang, WANG Shaoyu, et al. Dynamic Spectrum Anti-Jamming With Reinforcement Learning Based on Value Function Approximation[J]. IEEE Wireless Communications Letters, 2023, 12(2): 386–390. doi: 10.1109/LWC.2022.3228045.
|
[4] |
汪志勇, 张沪寅, 徐宁, 等. 认知无线电网络中基于随机学习博弈的信道分配与功率控制[J]. 电子学报, 2018, 46(12): 2870–2877. doi: 10.3969/j.issn.0372-2112.2018.12.008.
WANG Zhiyong, ZHANG Huyin, XU Ning, et al. Channel assignment and power control based on stochastic learning game in cognitive radio networks[J]. Acta electronica sinica, 2018, 46(12): 2870–2877. doi: 10.3969/j.issn.0372-2112.2018.12.008.
|
[5] |
饶宁, 许华, 蒋磊, 等. 基于多智能体深度强化学习的分布式协同干扰功率分配算法[J]. 电子学报, 2022, 50(6): 1319–1330. doi: 10.12263/DZXB.20210818.
RAO Ning, XU Hua, JIANG Lei, et al. Allocation algorithm of distributed cooperative jamming power based on multi-agent deep reinforcement learning[J]. Acta electronica sinica, 2022, 50(6): 1319–1330. doi: 10.12263/DZXB.20210818.
|
[6] |
宋佰霖, 许华, 齐子森, 等. 一种基于深度强化学习的协同通信干扰决策算法[J]. 电子学报, 2022, 50(6): 1301–1309. doi: 10.12263/DZXB.20210814.
SONG Bailin, XU Hua, QI Ziseng, et al. A collaborative communication jamming decision algorithm based on deep reinforcement learning[J]. Acta electronica sinica, 2022, 50(6): 1301–1309. doi: 10.12263/DZXB.20210814.
|
[7] |
AMURU S, TEKIN C, SCHAAR M V D, et al. Jamming Bandits—A Novel Learning Method for Optimal Jamming[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2792–2808. doi: 10.1109/TWC.2015.2510643.
|
[8] |
ZHUANSUN Shaoshuai, YANG Junan, LIU Hui, et al. A novel jamming strategy-greedy bandit[C]. Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN). Guangzhou, China: IEEE, 2017: 1142-1146. doi: 10.1109/ICCSN.2017.8230289.
|
[9] |
张君毅, 张冠杰, 杨鸿杰. 针对未知通信目标的干扰策略智能生成方法研究[J]. 电子测量技术, 2019, 42(16): 148–153. doi: 10.19651/j.cnki.emt.1903103.
ZHANG Junyi, ZHANG Guanjie, YANG Hongjie. Research on intelligent interference strategy generation method for unknown communication target[J]. Electronic measurement technology, 2019, 42(16): 148–153. doi: 10.19651/j.cnki.emt.1903103.
|
[10] |
ZHUANSUN Shaoshuai, YANG Junan, LIU Hui. An algorithm for jamming strategy using OMP and MAB[J]. EURASIP Journal on Wireless Communications and Networking, 2019(1): 85–95. doi: 10.1186/s13638-019-1414-4.
|
[11] |
颛孙少帅, 杨俊安, 刘辉, 等. 采用双层强化学习的干扰决策算法[J]. 西安交通大学学报, 2018, 52(2): 63–69. doi: 10.7652/xjtuxb201802010.
ZHUANSUN Shaoshuai, YANG Junan, LIU Hui, et al. An algorithm for jamming decision using dual reinforcement learning[J]. Journal of Xi’an jiaotong university, 2018, 52(2): 63–69. doi: 10.7652/xjtuxb201802010.
|
[12] |
ZHOU Cheng, MA Congshan, LIN Qian, et al. Intelligent bandit learning for jamming strategy generation[J]. Wireless Networks, 2023, 29(5): 2391–2403. doi: 10.1007/s11276-023-03286-9.
|
[13] |
李芳, 熊俊, 赵肖迪, 等. 基于快速强化学习的无线通信干扰规避策略[J]. 电子与信息学报, 2022, 44(11): 3842–3849. doi: 10.11999/JEIT210965.
LI Fang, XIONG Jun, ZHAO Xiaodi, et al. Wireless communications interference avoidance based on fast reinforcement learning[J]. Journal of electronics and information technology, 2022, 44(11): 3842–3849. doi: 10.11999/JEIT210965.
|
[14] |
潘筱茜, 张姣, 刘琰, 等. 基于深度强化学习的多域联合干扰规避[J]. 信号处理, 2022, 38(12): 2572–2581. doi: 10.16798/j.issn.1003-0530.2022.12.012.
PAN Xiaoqian, ZHANG Jiao, LIU Yan, et al. Multi-domain joint interference avoidance based on deep reinforcement learning[J]. Journal of signal processing, 2022, 38(12): 2572–2581. doi: 10.16798/j.issn.1003-0530.2022.12.012.
|
[15] |
TOM V. 9 Reinforcement Learning: The Markov Decision Process Approach[M]. MIT Press. 2021: 133-152.
|
[16] |
杨鸿杰, 张君毅. 基于强化学习的智能干扰算法研究[J]. 电子测量技术, 2018, 41(20): 49–54. doi: 10.19651/j.cnki/emt.1802113.
YANG Hongjie, ZHANG Junyi. Research on intelligent interference algorithm based on reinforcement learning[J]. Electronic measurement technology, 2018, 41(20): 49–54. doi: 10.19651/j.cnki/emt.1802113.
|
[17] |
MARTIN A, ANDERS H. Reinforcement Learning[M]. Wiley. 2023: 327-349.
|
[18] |
裴绪芳, 陈学强, 吕丽刚, 等. 基于随机森林强化学习的干扰智能决策方法研究[J]. 通信技术, 2019, 52(9): 2118–2124. doi: 10.3969/j.issn.1002-0802.2019.09.009.
PEI Xufang, CHEN Xueqiang, LV Ligang, et al. Research on jamming intelligent decision-making method based on random forest reinforcement learning[J]. Communications technology, 2019, 52(9): 2118–2124. doi: 10.3969/j.issn.1002-0802.2019.09.009.
|
[19] |
张双义, 沈箬怡, 陈学强, 等. 基于强化学习的功率与信道联合干扰方法研究[J]. 通信技术, 2020, 53(8): 1859–1868. doi: 10.3969/j.issn.1002-0802.2020.08.004.
ZHANG Shuangyi, SHEN Ruoyi, CHEN Xueqiang, et al. Joint jamming method of channel and power based on reinforcement learning[J]. Communications technology, 2020, 53(8): 1859–1868. doi: 10.3969/j.issn.1002-0802.2020.08.004.
|
[20] |
BOWLING M, VELOSO M M. Rational and Convergent Learning in Stochastic Games[C]. Proceedings of the International Joint Conference on Artificial Intelligence. Seattle, WA, 2001: 1021-1026.
|
[21] |
XU B, ZENG W. A Combat Decision Support Method Based on OODA and Dynamic Graph Reinforcement Learning[C]. Proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC). Hefei, China: IEEE , 2022: 4872-4878. doi: 10.1109/CCDC55256.2022.10033986.
|