| Citation: | ZHANG Dongyang, LU Zixuan, LIU Junmin, LI Lanyu. A Survey of Continual Learning with Deep Networks: Theory, Method and Application[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3849-3878. doi: 10.11999/JEIT240095 | 
 
	                | [1] | KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, USA, 2012: 1097–1105. | 
| [2] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing,    et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi:  10.1109/CVPR.2016.90. | 
| [3] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A,    et al. An image is worth 16×16 words: Transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, Austria, 2021. | 
| [4] | VASWANI A, SHAZEER N, PARMAR N,    et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems (NIPS), Long Beach, USA, 2017: 6000–6010. | 
| [5] | BROWN T B, MANN B, RYDER N,    et al. Language models are few-shot learners[C]. The 34th International Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2020: 159. | 
| [6] | ABDEL-HAMID O, MOHAMED A R, JIANG Hui, et al. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533–1545. doi:  10.1109/TASLP.2014.2339736. | 
| [7] | ZHOU Kaiyang, LIU Ziwei, QIAO Yu, et al. Domain generalization: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4396–4415. doi:  10.1109/TPAMI.2022.3195549. | 
| [8] | WANG Yi, DING Yi, HE Xiangjian, et al. Novelty detection and online learning for chunk data streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2400–2412. doi:  10.1109/TPAMI.2020.2965531. | 
| [9] | HOI S C H, SAHOO D, LU Jing, et al. Online learning: A comprehensive survey[J]. Neurocomputing, 2021, 459: 249–289. doi:  10.1016/J.NEUCOM.2021.04.112. | 
| [10] | FRENCH R M. Catastrophic forgetting in connectionist networks[J]. Trends in Cognitive Sciences, 1999, 3(4): 128–135. doi:  10.1016/s1364-6613(99)01294-2. | 
| [11] | MCCLOSKEY M and COHEN N J. Catastrophic interference in connectionist networks: The sequential learning problem[J]. Psychology of Learning and Motivation, 1989, 24: 109–165. | 
| [12] | CICHON J and GAN Wenbiao. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity[J]. Nature, 2015, 520(7546): 180–185. doi:  10.1038/nature14251. | 
| [13] | ZENKE F, GERSTNER W, and GANGULI S. The temporal paradox of Hebbian learning and homeostatic plasticity[J]. Current Opinion in Neurobiology, 2017, 43: 166–176. doi:  10.1016/j.conb.2017.03.015. | 
| [14] | POWER J D and SCHLAGGAR B L. Neural plasticity across the lifespan[J]. WIREs Developmental Biology, 2017, 6(1): e216. doi:  10.1002/wdev.216. | 
| [15] | MCCLELLAND J L, MCNAUGHTON B L, and O'REILLY R C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory[J]. Psychological Review, 1995, 102(3): 419–457. doi:  10.1037/0033-295x.102.3.419. | 
| [16] | RATCLIFF R. Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions[J]. Psychological Review, 1990, 97(2): 285–308. doi:  10.1037/0033-295x.97.2.285. | 
| [17] | KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521–3526. doi:  10.1073/pnas.1611835114. | 
| [18] | HINTON G E and PLAUT D C. Using fast weights to deblur old memories[C]. Proceedings of the 9th Annual Conference of the Cognitive Science Society, Seattle, USA, 1987: 177–186. | 
| [19] | KAMRA N, GUPTA U, and LIU Yan. Deep generative dual memory network for continual learning[J]. arXiv: 1710.10368, 2017. doi:  10.48550/arXiv.1710.10368. | 
| [20] | ROBBINS H and MONRO S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951, 22(3): 400–407. doi:  10.1214/aoms/1177729586. | 
| [21] | LOPEZ-PAZ D and RANZATO M A. Gradient episodic memory for continual learning[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6470–6479. | 
| [22] | ZENG Guanxiong, CHEN Yang, CUI Bo, et al. Continual learning of context-dependent processing in neural networks[J]. Nature Machine Intelligence, 2019, 1(8): 364–372. doi:  10.1038/s42256-019-0080-x. | 
| [23] | MALLYA A and LAZEBNIK S. PackNet: Adding multiple tasks to a single network by iterative pruning[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7765–7773. doi:  10.1109/CVPR.2018.00810. | 
| [24] | YAN Shipeng, XIE Jiangwei, and HE Xuming. DER: Dynamically expandable representation for class incremental learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 3013–3022. doi:  10.1109/CVPR46437.2021.00303. | 
| [25] | DOUILLARD A, RAMÉ A, COUAIRON G,    et al. DyTox: Transformers for continual learning with DYnamic TOken eXpansion[C]. IEEE/CVF International Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9275–9285. doi:  10.1109/CVPR52688.2022.00907. | 
| [26] | WANG Zifeng, ZHANG Zizhao, LEE C Y,    et al. Learning to prompt for continual learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 139–149. doi:  10.1109/CVPR52688.2022.00024. | 
| [27] | HE Junxian, ZHOU Chunting, MA Xuezhe,    et al. Towards a unified view of parameter-efficient transfer learning[C]. Tenth International Conference on Learning Representations, 2022. | 
| [28] | JIA Menglin, TANG Luming, CHEN B C,    et al. Visual prompt tuning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 709–727. doi:  10.1007/978-3-031-19827-4_41. | 
| [29] | HOULSBY N, GIURGIU A, JASTRZEBSKI S,    et al. Parameter-efficient transfer learning for NLP[C]. 36th International Conference on Machine Learning, Long Beach, USA, 2019: 2790–2799. | 
| [30] | HU E J, SHEN Yelong, WALLIS P,    et al. LoRA: Low-rank adaptation of large language models[C]. Tenth International Conference on Learning Representations, 2022. | 
| [31] | LI X L and LIANG P. Prefix-tuning: Optimizing continuous prompts for generation[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021: 4582–4597. doi:  10.18653/v1/2021.acl-long.353. | 
| [32] | LESTER B, AL-RFOU R, and CONSTANT N. The power of scale for parameter-efficient prompt tuning[C]. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 2021: 3045–3059. doi:  10.18653/v1/2021.emnlp-main.243. | 
| [33] | PARISI G I, KEMKER R, PART J L, et al. Continual lifelong learning with neural networks: A review[J]. Neural Networks, 2019, 113: 54–71. doi:  10.1016/j.neunet.2019.01.012. | 
| [34] | DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: Defying forgetting in classification tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3366–3385. doi:  10.1109/tpami.2021.3057446. | 
| [35] | MASANA M, LIU Xialei, TWARDOWSKI B, et al. Class-incremental learning: Survey and performance evaluation on image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5513–5533. doi:  10.1109/tpami.2022.3213473. | 
| [36] | BELOUADAH E, POPESCU A, and KANELLOS I. A comprehensive study of class incremental learning algorithms for visual tasks[J]. Neural Networks, 2021, 135: 38–54. doi:  10.1016/j.neunet.2020.12.003. | 
| [37] | 朱飞, 张煦尧, 刘成林. 类别增量学习研究进展和性能评价[J]. 自动化学报, 2023, 49(3): 635–660. doi:  10.16383/j.aas.c220588. ZHU Fei, ZHANG Xuyao, and LIU Chenglin. Class incremental learning: A review and performance evaluation[J]. Acta Automatica Sinica, 2023, 49(3): 635–660. doi:  10.16383/j.aas.c220588. | 
| [38] | MERMILLOD M, BUGAISKA A, and BONIN P. The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects[J]. Frontiers in Psychology, 2013, 4: 504. doi:  10.3389/fpsyg.2013.00504. | 
| [39] | VAN DE VEN G M and TOLIAS A S. Three scenarios for continual learning[J]. arXiv: 1904.07734, 2019. doi:  10.48550/arXiv.1904.07734. | 
| [40] | BUZZEGA P, BOSCHINI M, PORRELLO A,    et al. Dark experience for general continual learning: A strong, simple baseline[C]. The 34th International Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2020: 1335. | 
| [41] | MAI Zheda, LI Ruiwen, JEONG J, et al. Online continual learning in image classification: An empirical survey[J]. Neurocomputing, 2022, 469: 28–51. doi:  10.1016/j.neucom.2021.10.021. | 
| [42] | GOODFELLOW I J, MIRZA M, XIAO Da,    et al. An empirical investigation of catastrophic forgetting in gradient-based neural networks[J]. arXiv: 1312.6211, 2013. doi:  10.48550/arXiv.1312.6211. | 
| [43] | SHMELKOV K, SCHMID C, and ALAHARI K. Incremental learning of object detectors without catastrophic forgetting[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3420–3429. doi:  10.1109/ICCV.2017.368. | 
| [44] | LI Dawei, TASCI S, GHOSH S,    et al. RILOD: Near real-time incremental learning for object detection at the edge[C]. The 4th ACM/IEEE Symposium on Edge Computing, Arlington, USA, 2019: 113–126. doi:  10.1145/3318216.3363317. | 
| [45] | PENG Can, ZHAO Kun, MAKSOUD S, et al. SID: Incremental learning for anchor-free object detection via Selective and Inter-related Distillation[J]. Computer Vision and Image Understanding, 2021, 210: 103229. doi:  10.1016/j.cviu.2021.103229. | 
| [46] | 商迪, 吕彦锋, 乔红. 受人脑中记忆机制启发的增量目标检测方法[J]. 计算机科学, 2023, 50(2): 267–274. doi:  10.11896/jsjkx.220900212. SHANG Di, LYU Yanfeng, and QIAO Hong. Incremental object detection inspired by memory mechanisms in brain[J]. Computer Science, 2023, 50(2): 267–274. doi:  10.11896/jsjkx.220900212. | 
| [47] | CERMELLI F, MANCINI M, BULÒ S R,    et al. Modeling the background for incremental learning in semantic segmentation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9230–9239. doi:  10.1109/CVPR42600.2020.00925. | 
| [48] | DOUILLARD A, CHEN Yifu, DAPOGNY A,    et al. PLOP: Learning without forgetting for continual semantic segmentation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 4039–4049. doi:  10.1109/CVPR46437.2021.00403. | 
| [49] | YAN Shipeng, ZHOU Jiale, XIE Jiangwei,    et al. An EM framework for online incremental learning of semantic segmentation[C]. Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 3052–3060. doi:  10.1145/3474085.3475443. | 
| [50] | MICHIELI U and ZANUTTIGH P. Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 1114–1124. doi:  10.1109/CVPR46437.2021.00117. | 
| [51] | YANG Guanglei, FINI E, XU Dan, et al. Uncertainty-aware contrastive distillation for incremental semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2567–2581. doi:  10.1109/TPAMI.2022.3163806. | 
| [52] | ZHAI Mengyao, CHEN Lei, TUNG F,    et al. Lifelong GAN: Continual learning for conditional image generation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 2759–2768. doi:  10.1109/ICCV.2019.00285. | 
| [53] | Zając M, Deja K, Kuzina A, et al. Exploring continual learning of diffusion models[J]. arxiv:2303.15342, 2023. doi: 10.48550/arXiv.2303.15342. | 
| [54] | ZHAI Mengyao, CHEN Lei, HE Jiawei,    et al. Piggyback GAN: Efficient lifelong learning for image conditioned generation[C]. The 17th European Conference on Computer Vision, Glasgow, UK, 2020: 397–413. doi:  10.1007/978-3-030-58589-1_24. | 
| [55] | WANG Liyuan, YANG Kuo, LI Chongxuan,    et al. ORDisCo: Effective and efficient usage of incremental unlabeled data for semi-supervised continual learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5379–5388. doi:  10.1109/CVPR46437.2021.00534. | 
| [56] | YOON J, HWANG S J, and CAO Yue. Continual learners are incremental model generalizers[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 40129–40146. | 
| [57] | HU Dapeng, YAN Shipeng, LU Qizhengqiu,    et al. How well does self-supervised pre-training perform with streaming data?[C]. Tenth International Conference on Learning Representations, 2022. | 
| [58] | COSSU A, CARTA A, PASSARO L, et al. Continual pre-training mitigates forgetting in language and vision[J]. Neural Networks, 2024, 179: 106492. doi:  10.1016/j.neunet.2024.106492. | 
| [59] | CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41–75. doi:  10.1023/A:1007379606734. | 
| [60] | HOSPEDALES T, ANTONIOU A, MICAELLI P, et al. Meta-learning in neural networks: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5149–5169. doi:  10.1109/TPAMI.2021.3079209. | 
| [61] | WEISS K, KHOSHGOFTAAR T M, and WANG Dingding. A survey of transfer learning[J]. Journal of Big data, 2016, 3(1): 9. doi:  10.1186/s40537-016-0043-6. | 
| [62] | PATEL V M, GOPALAN R, LI Ruonan, et al. Visual domain adaptation: A survey of recent advances[J]. IEEE Signal Processing Magazine, 2015, 32(3): 53–69. doi:  10.1109/MSP.2014.2347059. | 
| [63] | WANG Jindong, LAN Cuiling, LIU Chang, et al. Generalizing to unseen domains: A survey on domain generalization[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8052–8072. doi:  10.1109/TKDE.2022.3178128. | 
| [64] | REBUFFI S A, KOLESNIKOV A, SPERL G,    et al. iCaRL: Incremental classifier and representation learning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5533–5542. doi:  10.1109/CVPR.2017.587. | 
| [65] | HUSZÁR F. Note on the quadratic penalties in elastic weight consolidation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): E2496–E2497. doi:  10.1073/pnas.1717042115. | 
| [66] | LIU Xialei, MASANA M, HERRANZ L,    et al. Rotate your networks: Better weight consolidation and less catastrophic forgetting[C]. The 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018: 2262–2268. doi:  10.1109/ICPR.2018.8545895. | 
| [67] | RITTER H, BOTEV A, and BARBER D. Online structured Laplace approximations for overcoming catastrophic forgetting[C]. The 32nd International Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2018: 3742–3752. | 
| [68] | ZENKE F, POOLE B, and GANGULI S. Continual learning through synaptic intelligence[C]. The 34th International Conference on Machine Learning (ICML), Sydney, Australia, 2017: 3987–3995. | 
| [69] | ALJUNDI R, BABILONI F, ELHOSEINY M,    et al. Memory aware synapses: Learning what (not) to forget[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 144–161. doi:  10.1007/978-3-030-01219-9_9. | 
| [70] | CHAUDHRY A, DOKANIA P K, AJANTHAN T,    et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 556–572. doi:  10.1007/978-3-030-01252-6_33. | 
| [71] | LEE S W, KIM J H, JUN J,    et al. Overcoming catastrophic forgetting by incremental moment matching[C]. The 31st International Conference on Neural Information Processing Systems (NIPS), Long Beach, USA, 2017: 4655–4665. | 
| [72] | BENZING F. Unifying importance based regularisation methods for continual learning[C]. The 25th International Conference on Artificial Intelligence and Statistics (ICAIS), 2022: 2372–2396. | 
| [73] | HINTON G, VINYALS O, and DEAN J. Distilling the knowledge in a neural network[J]. arXiv: 1503.02531, 2015. doi:  10.48550/arXiv.1503.02531. | 
| [74] | LI Zhizhong and HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935–2947. doi:  10.1109/TPAMI.2017.2773081. | 
| [75] | HOU Saihui, PAN Xinyu, LOY C C,    et al. Learning a unified classifier incrementally via rebalancing[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 831–839. doi:  10.1109/CVPR.2019.00092. | 
| [76] | DHAR P, SINGH R V, PENG Kuanchuan,    et al. Learning without memorizing[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 5133–5141. doi:  10.1109/CVPR.2019.00528. | 
| [77] | KANG M, PARK J, and HAN B. Class-incremental learning by knowledge distillation with adaptive feature consolidation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 16050–16059. doi:  10.1109/CVPR52688.2022.01560. | 
| [78] | DOUILLARD A, CORD M, OLLION C,    et al. PODNet: Pooled outputs distillation for small-tasks incremental learning[C]. The 16th European Conference on Computer Vision (ECCV), Glasgow, UK, 2020: 86–102. doi:  10.1007/978-3-030-58565-5_6. | 
| [79] | SIMON C, KONIUSZ P, and HARANDI M. On learning the geodesic path for incremental learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 1591–1600. doi:  10.1109/CVPR46437.2021.00164. | 
| [80] | GAO Qiankun, ZHAO Chen, GHANEM B,    et al. R-DFCIL: Relation-guided representation learning for data-free class incremental learning[C]. The 17th European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 2022: 423–439. doi:  10.1007/978-3-031-20050-2_25. | 
| [81] | TAO Xiaoyu, CHANG Xinyuan, HONG Xiaopeng,    et al. Topology-preserving class-incremental learning[C]. The 16th European Conference on Computer Vision (ECCV), Glasgow, UK, 2020: 254–270. doi:  10.1007/978-3-030-58529-7_16. | 
| [82] | TAO Xiaoyu, HONG Xiaopeng, CHANG Xinyuan,    et al. Few-shot class-incremental learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 12180–12189. doi:  10.1109/CVPR42600.2020.01220. | 
| [83] | MARTINETZ T M and SCHULTEN K J. A "neural-gas" network learns topologies[M]. KOHONEN T, MÄKISARA K, SIMULA O,    et al. Artificial Neural Networks. Amsterdam: North-Holland, 1991: 397–402. | 
| [84] | LIU Yu, HONG Xiaopeng, TAO Xiaoyu, et al. Model behavior preserving for class-incremental learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7529–7540. doi:  10.1109/TNNLS.2022.3144183. | 
| [85] | ASADI N, DAVARI M R, MUDUR S,    et al. Prototype-sample relation distillation: Towards replay-free continual learning[C]. The 40th International Conference on Machine Learning, Honolulu, USA, 2023: 1093–1106. | 
| [86] | ARANI E, SARFRAZ F, and ZONOOZ B. Learning fast, learning slow: A general continual learning method based on complementary learning system[C]. The Tenth International Conference on Learning Representations (ICLR), 2022. | 
| [87] | VIJAYAN P, BHAT P, ZONOOZ B,    et al. TriRE: A multi-mechanism learning paradigm for continual knowledge retention and promotion[C]. The 37th Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 3226. | 
| [88] | JEEVESWARAN K, BHAT P S, ZONOOZ B,    et al. BiRT: Bio-inspired replay in vision transformers for continual learning[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 14817–14835. | 
| [89] | ZHU Fei, ZHANG Xuyao, WANG Chuang,    et al. Prototype augmentation and self-supervision for incremental learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5867–5876. doi:  10.1109/CVPR46437.2021.00581. | 
| [90] | SZATKOWSKI F, PYLA M, PRZEWIĘŹLIKOWSKI M,    et al. Adapt your teacher: Improving knowledge distillation for exemplar-free continual learning[C]. IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2024: 1966–1976. doi:  10.1109/WACV57701.2024.00198. | 
| [91] | LIANG Yanshuo and LI Wujun. Loss decoupling for task-agnostic continual learning[C]. The 37th International Conference on Neural Information Processing Systems (NIPS), New Orleans, USA, 2023: 492. | 
| [92] | WU Yue, CHEN Yinpeng, WANG Lijuan,    et al. Large scale incremental learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 374–382. doi:  10.1109/CVPR.2019.00046. | 
| [93] | ZHAO Bowen, XIAO Xi, GAN Guojun,    et al. Maintaining discrimination and fairness in class incremental learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 13205–13214. doi:  10.1109/CVPR42600.2020.01322. | 
| [94] | GOSWAMI D, LIU Yuyang, TWARDOWSKI B,    et al. FeCAM: Exploiting the heterogeneity of class distributions in exemplar-free continual learning[C]. The 37th Conference on Neural Information Processing Systems (NIPS), New Orleans, USA, 2023: 288. | 
| [95] | XIANG Xiang, TAN Yuwen, WAN Qian,    et al. Coarse-to-fine incremental few-shot learning[C]. The 17th European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 2022: 205–222. doi:  10.1007/978-3-031-19821-2_12. | 
| [96] | AHN H, KWAK J, LIM S,    et al. SS-IL: Separated softmax for incremental learning[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 824–833. doi:  10.1109/ICCV48922.2021.00088. | 
| [97] | YANG Yibo, CHEN Shixiang, LI Xiangtai,    et al. Inducing neural collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep neural network?[C]. The 36th Conference on Neural Information Processing Systems (NIPS), New Orleans, USA, 2022: 2753. | 
| [98] | YANG Yibo, YUAN Haobo, LI Xiangtai,    et al. Neural collapse inspired feature-classifier alignment for few-shot class-incremental learning[C]. The 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, 2023. | 
| [99] | LYU Yilin, WANG Liyuan, ZHANG Xingxing,    et al. Overcoming recency bias of normalization statistics in continual learning: Balance and adaptation[C]. The 37th Conference on Neural Information Processing Systems (NIPS), New Orleans, USA, 2023: 1108. | 
| [100] | GUO Chengcheng, ZHAO Bo, and BAI Yanbing. DeepCore: A comprehensive library for coreset selection in deep learning[C]. 33rd International Conference on Database and Expert Systems Applications, Vienna, Austria, 2022: 181–195. doi:  10.1007/978-3-031-12423-5_14. | 
| [101] | FELDMAN D. Introduction to core-sets: An updated survey[J]. arXiv: 2011.09384, 2020. doi:  10.48550/arXiv.2011.09384. | 
| [102] | CHEN Yutian, WELLING M, and SMOLA A J. Super-samples from kernel herding[C]. 26th Conference on Uncertainty in Artificial Intelligence, Catalina Island, USA, 2010: 109–116. | 
| [103] | WELLING M. Herding dynamical weights to learn[C]. The 26th Annual International Conference on Machine Learning, Montreal, Canada, 2009: 1121–1128. doi:  10.1145/1553374.1553517. | 
| [104] | CHAUDHRY A, ROHRBACH M, ELHOSEINY M,    et al. On tiny episodic memories in continual learning[J]. arXiv: 1902.10486, 2019. doi:  10.48550/arXiv.1902.10486. | 
| [105] | YOON J, MADAAN D, YANG E,    et al. Online coreset selection for rehearsal-based continual learning[C]. Tenth International Conference on Learning Representations, 2022. | 
| [106] | ALJUNDI R, CACCIA L, BELILOVSKY E,    et al. Online continual learning with maximally interfered retrieval[C]. The 33rd International Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2019: 1063. | 
| [107] | BANG J, KIM H, YOO Y J,    et al. Rainbow memory: Continual learning with a memory of diverse samples[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 8214–8223. doi:  10.1109/CVPR46437.2021.00812. | 
| [108] | BORSOS Z, MUTNÝ M, and KRAUSE A. Coresets via bilevel optimization for continual learning and Streaming[C]. The 34th International Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2020: 1247. | 
| [109] | ZHOU Xiao, PI Renjie, ZHANG Weizhong,    et al. Probabilistic bilevel coreset selection[C]. 39th International Conference on Machine Learning, Baltimore, USA, 2022: 27287–27302. | 
| [110] | TIWARI R, KILLAMSETTY K, IYER R,    et al. GCR: Gradient coreset based replay buffer selection for continual learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 99–108. doi:  10.1109/CVPR52688.2022.00020. | 
| [111] | HAO Jie, JI Kaiyi, and LIU Mingrui. Bilevel coreset selection in continual learning: A new formulation and algorithm[C]. The 37th Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 2220. | 
| [112] | WANG Tongzhou, ZHU Junyan, TORRALBA A,    et al. Dataset distillation[J]. arXiv: 1811.10959, 2018. doi:  10.48550/arXiv.1811.10959. | 
| [113] | YU Ruonan, LIU Songhua, and WANG Xinchao. Dataset distillation: A comprehensive review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(1): 150–170. doi:  10.1109/TPAMI.2023.3323376. | 
| [114] | LIU Yaoyao, SU Yuting, LIU Anan,    et al. Mnemonics training: Multi-class incremental learning without forgetting[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12242–12251. doi:  10.1109/CVPR42600.2020.01226. | 
| [115] | ZHAO Bo, MOPURI K R, and BILEN H. Dataset condensation with gradient matching[C]. The 9th International Conference on Learning Representations, Austria, 2021. | 
| [116] | ZHAO Bo and BILEN H. Dataset condensation with differentiable Siamese augmentation[C]. The 38th International Conference on Machine Learning, 2021: 12674–12685. | 
| [117] | YANG Enneng, SHEN Li, WANG Zhenyi,    et al. An efficient dataset condensation plugin and its application to continual learning[C]. The 37th Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 2957. | 
| [118] | CACCIA L, BELILOVSKY E, CACCIA M,    et al. Online learned continual compression with adaptive quantization modules[C]. The 37th International Conference on Machine Learning, 2020: 1240–1250. | 
| [119] | VAN DEN OORD A, VINYALS O, and KAVUKCUOGLU K. Neural discrete representation learning[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6309–6318. | 
| [120] | WANG Liyuan, ZHANG Xingxing, YANG Kuo,    et al. Memory replay with data compression for continual learning[C]. Tenth International Conference on Learning Representations, 2022. | 
| [121] | KULESZA A and TASKAR B. Determinantal point processes for machine learning[J]. Foundations and Trends®  in Machine Learning, 2012, 5(2/3): 123–286. doi:  10.1561/2200000044. | 
| [122] | LUO Zilin, LIU Yaoyao, SCHIELE B,    et al. Class-incremental exemplar compression for class-incremental learning[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 11371–11380. doi:  10.1109/CVPR52729.2023.01094. | 
| [123] | ZHAI Jiangtian, LIU Xialei, BAGDANOV A D,    et al. Masked autoencoders are efficient class incremental learners[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19047–19056. doi:  10.1109/ICCV51070.2023.01750. | 
| [124] | HE Kaiming, CHEN Xinlei, XIE Saining,    et al. Masked autoencoders are scalable vision learners[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 15979–15988. doi:  10.1109/CVPR52688.2022.01553. | 
| [125] | ISCEN A, ZHANG J, LAZEBNIK S,    et al. Memory-efficient incremental learning through feature adaptation[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 699–715. doi:  10.1007/978-3-030-58517-4_41. | 
| [126] | BELOUADAH E and POPESCU A. IL2M: Class incremental learning with dual memory[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 583–592. doi:  10.1109/ICCV.2019.00067. | 
| [127] | TOLDO M and OZAY M. Bring evanescent representations to life in lifelong class incremental learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16711–16720. doi:  10.1109/CVPR52688.2022.01623. | 
| [128] | WANG Kai, VAN DE WEIJER J, and HERRANZ L. ACAE-REMIND for online continual learning with compressed feature replay[J]. Pattern Recognition Letters, 2021, 150: 122–129. doi:  10.1016/j.patrec.2021.06.025. | 
| [129] | PETIT G, POPESCU A, SCHINDLER H,    et al. FeTrIL: Feature translation for exemplar-free class-incremental learning[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 3900–3909. doi:  10.1109/WACV56688.2023.00390. | 
| [130] | ZHU Fei, CHENG Zhen, ZHANG Xuyao,    et al. Class-incremental learning via dual augmentation[C]. The 35th International Conference on Neural Information Processing Systems (NIPS), 2021: 1096. | 
| [131] | ZHU Kai, ZHAI Wei, CAO Yang,    et al. Self-sustaining representation expansion for non-exemplar class-incremental learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9286–9395. doi:  10.1109/CVPR52688.2022.00908. | 
| [132] | SHI Wuxuan and YE Mang. Prototype reminiscence and augmented asymmetric knowledge aggregation for non-exemplar class-incremental learning[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 1772–1781. doi:  10.1109/ICCV51070.2023.00170. | 
| [133] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M,    et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680. | 
| [134] | KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. 2nd International Conference on Learning Representations, Banff, Canada, 2014. | 
| [135] | HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574. | 
| [136] | SHIN H, LEE J K, KIM J,    et al. Continual learning with deep generative replay[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 2994–3003. | 
| [137] | WU Chenshen, HERRANZ L, LIU Xialei,    et al. Memory replay GANs: Learning to generate images from new categories without forgetting[C]. The 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 2018: 5966–5976. | 
| [138] | HE Chen, WANG Ruiping, SHAN Shiguang,    et al. Exemplar-supported generative reproduction for class incremental learning[C]. British Machine Vision Conference 2018, Newcastle, UK, 2018: 98. | 
| [139] | KEMKER R and KANAN C. FearNet: Brain-inspired model for incremental learning[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–15. | 
| [140] | YE Fei and BORS A G. Learning latent representations across multiple data domains using lifelong VAEGAN[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 777–795. doi:  10.1007/978-3-030-58565-5_46. | 
| [141] | GAO Rui and LIU Weiwei. DDGR: Continual learning with deep diffusion-based generative replay[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 10744–10763. | 
| [142] | JODELET Q, LIU Xin, PHUA Y J,    et al. Class-incremental learning using diffusion model for distillation and replay[C]. 2023 IEEE/CVF International Conference on Computer Vision Workshops, Paris, France, 2023: 3417–3425. doi:  10.1109/ICCVW60793.2023.00367. | 
| [143] | XIANG Ye, FU Ying, JI Pan,    et al. Incremental learning using conditional adversarial networks[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 6618–6627. doi:  10.1109/ICCV.2019.00672. | 
| [144] | VAN DE VEN G M, SIEGELMANN H T, and TOLIAS A S. Brain-inspired replay for continual learning with artificial neural networks[J]. Nature Communications, 2020, 11(1): 4069. doi:  10.1038/s41467-020-17866-2. | 
| [145] | LIU Xialei, WU Chenshen, MENTA M,    et al. Generative feature replay for class-incremental learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 915–924. doi:  10.1109/CVPRW50498.2020.00121. | 
| [146] | CHAUDHRY A, RANZATO M A, ROHRBACH M,    et al. Efficient lifelong learning with A-GEM[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019. | 
| [147] | RIEMER M, CASES I, AJEMIAN R,    et al. Learning to learn without forgetting by maximizing transfer and minimizing interference[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019. | 
| [148] | FARAJTABAR M, AZIZAN N, MOTT A,    et al. Orthogonal gradient descent for continual learning[C]. 23rd International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 2020: 3762–3773. | 
| [149] | TANG Shixiang, CHEN Dapeng, ZHU Jinguo,    et al. Layerwise optimization by gradient decomposition for continual learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 9629–9638. doi:  10.1109/CVPR46437.2021.00951. | 
| [150] | KAO T C, JENSEN K T, VAN DE VEN G M,    et al. Natural continual learning: Success is a journey, not (just) a destination[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 2150. | 
| [151] | LIU Hao and LIU Huaping. Continual learning with recursive gradient optimization[C]. Tenth International Conference on Learning Representations, 2022. | 
| [152] | SAHA G, GARG I, and ROY K. Gradient projection memory for continual learning[C]. 9th International Conference on Learning Representations, Austria, 2021. | 
| [153] | WANG Shipeng, LI Xiaorong, SUN Jian,    et al. Training networks in null space of feature covariance for continual learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 184–193. doi:  10.1109/CVPR46437.2021.00025. | 
| [154] | KONG Yajing, LIU Liu, WANG Zhen,    et al. Balancing stability and plasticity through advanced null space in continual learning[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 219–236. doi:  10.1007/978-3-031-19809-0_13. | 
| [155] | LIN Sen, YANG Li, FAN Deliang,    et al. TRGP: Trust region gradient projection for continual learning[C]. Tenth International Conference on Learning Representations, 2022. | 
| [156] | LIN Sen, YANG Li, FAN Deliang,    et al. Beyond not-forgetting: Continual learning with backward knowledge transfer[C]. The 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1176. | 
| [157] | HOCHREITER S and SCHMIDHUBER J. Flat minima[J]. Neural Computation, 1997, 9(1): 1–42. doi:  10.1162/neco.1997.9.1.1. | 
| [158] | KESKAR N S, MUDIGERE D, NOCEDAL J,    et al. On large-batch training for deep learning: Generalization gap and sharp minima[C]. 5th International Conference on Learning Representations, Toulon, France, 2017. | 
| [159] | FORET P, KLEINER A, MOBAHI H,    et al. Sharpness-aware minimization for efficiently improving generalization[C]. 9th International Conference on Learning Representations, Austria, 2021. | 
| [160] | HUANG Zhongzhan, LIANG Mingfu, LIANG Senwei,    et al. AlterSGD: Finding flat minima for continual learning by alternative training[J]. arXiv: 2107.05804, 2021. doi:  10.48550/arXiv.2107.05804. | 
| [161] | SHI Guangyuan, CHEN Jiaxin, ZHANG Wenlong,    et al. Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima[C]. The 35th Conference on Neural Information Processing Systems, 2021: 517. | 
| [162] | DENG Danruo, CHEN Guangyong, HAO Jianye,    et al. Flattening sharpness for dynamic gradient projection memory benefits continual learning[C]. 35th International Conference on Neural Information Processing System, 2021: 1430. | 
| [163] | LIU Yong, MAI Siqi, CHEN Xiangning,    et al. Towards efficient and scalable sharpness-aware minimization[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12350–12360. doi:  10.1109/CVPR52688.2022.01204. | 
| [164] | WU Tao, LUO Tie, and WUNSCH II D C. CR-SAM: Curvature regularized sharpness-aware minimization[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 6144–6152. doi:  10.1609/aaai.v38i6.28431. | 
| [165] | MADAAN D, YOON J, LI Yuanchun,    et al. Representational continuity for unsupervised continual learning[C]. Tenth International Conference on Learning Representations, 2022. | 
| [166] | CHA H, LEE J, and SHIN J. Co2L: Contrastive continual learning[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9496–9505. doi:  10.1109/ICCV48922.2021.00938. | 
| [167] | FINI E, DA COSTA V G T, ALAMEDA-PINEDA X,    et al. Self-supervised models are continual learners[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9611–9620. doi:  10.1109/CVPR52688.2022.00940. | 
| [168] | AHN H, CHA S, LEE D,    et al. Uncertainty-based continual learning with adaptive regularization[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 395. | 
| [169] | GURBUZ M B and DOVROLIS C. NISPA: Neuro-inspired stability-plasticity adaptation for continual learning in sparse networks[C]. The 39th International Conference on Machine Learning, Baltimore, USA, 2022: 8157–8174. | 
| [170] | JIN H and KIM E. Helpful or harmful: Inter-task association in continual learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 519–535. doi:  10.1007/978-3-031-20083-0_31. | 
| [171] | XUE Mengqi, ZHANG Haofei, SONG Jie,    et al. Meta-attention for ViT-backed continual learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 150–159. doi:  10.1109/CVPR52688.2022.00025. | 
| [172] | JANG E, GU Shixiang, and POOLE B. Categorical reparameterization with gumbel-softmax[C]. 5th International Conference on Learning Representations, Toulon, France, 2017. | 
| [173] | SERRÀ J, SURIS D, MIRON M,    et al. Overcoming catastrophic forgetting with hard attention to the task[C]. 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 4548–4557. | 
| [174] | WORTSMAN M, RAMANUJAN V, LIU R,    et al. Supermasks in superposition[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1272. | 
| [175] | KANG H, MINA R J L, MADJID S R H,    et al. Forget-free continual learning with winning subnetworks[C]. 39th International Conference on Machine Learning, Baltimore, USA, 2022: 10734–10750. | 
| [176] | YOON J, YANG E, LEE J,    et al. Lifelong learning with dynamically expandable networks[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–15. | 
| [177] | XU Ju and ZHU Zhanxing. Reinforced continual learning[C]. The 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 2018: 907–916. | 
| [178] | RUSU A A, RABINOWITZ N C, DESJARDINS G,    et al. Progressive neural networks[J]. arXiv: 1606.04671, 2016. doi:  10.48550/arXiv.1606.04671. | 
| [179] | FERNANDO C, BANARSE D, BLUNDELL C,    et al. PathNet: Evolution channels gradient descent in super neural networks[J]. arXiv: 1701.08734, 2017. doi:  10.48550/arXiv.1701.08734. | 
| [180] | RAJASEGARAN J, HAYAT M, KHAN S,    et al. Random path selection for incremental learning[J]. arXiv: 1906.01120, 2019. doi:  10.48550/arXiv.1906.01120. | 
| [181] | ALJUNDI R, CHAKRAVARTY P, and TUYTELAARS T. Expert gate: Lifelong learning with a network of experts[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7120–7129. doi:  10.1109/CVPR.2017.753. | 
| [182] | WANG Fuyun, ZHOU Dawei, YE Hanjia,    et al. FOSTER: Feature boosting and compression for class-incremental learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 398–414. doi:  10.1007/978-3-031-19806-9_23. | 
| [183] | ZHOU Dawei, WANG Qiwei, YE Hanjia,    et al. A model or 603 exemplars: Towards memory-efficient class-incremental learning[C]. The 11th International Conference on Learning Representations, Kigali, Rwanda, 2023. | 
| [184] | WANG Zifeng, ZHANG Zizhao, EBRAHIMI S,    et al. DualPrompt: Complementary prompting for rehearsal-free continual learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 631–648. doi:  10.1007/978-3-031-19809-0_36. | 
| [185] | SMITH J S, KARLINSKY L, GUTTA V,    et al. CODA-Prompt: COntinual decomposed attention-based prompting for rehearsal-free continual learning[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 11909–11919. doi:  10.1109/CVPR52729.2023.01146. | 
| [186] | GAO Qiankun, ZHAO Chen, SUN Yifan,    et al. A unified continual learning framework with general parameter-efficient tuning[C]. IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 11449–11459. doi:  10.1109/ICCV51070.2023.01055. | 
| [187] | ZHOU Dawei, CAI Ziwen, YE Hanjia,    et al. Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need[J]. arXiv: 2303.07338, 2023. doi:  10.48550/arXiv.2303.07338. | 
| [188] | WANG Yabin, MA Zhiheng, HUANG Zhiwu,    et al. Isolation and impartial aggregation: A paradigm of incremental learning without interference[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 10209–10217. doi:  10.1609/aaai.v37i8.26216. | 
| [189] | WANG Liyuan, XIE Jingyi, ZHANG Xingxing,    et al. Hierarchical decomposition of prompt-based continual learning: Rethinking obscured sub-optimality[C]. The 37th Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 3022. | 
| [190] | WANG Yabin, HUANG Zhiwu, and HONG Xiaopeng. S-prompts learning with pre-trained transformers: An Occam’s razor for domain incremental learning[C]. The 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 411. | 
| [191] | RADFORD A, KIM J W, HALLACY C,    et al. Learning transferable visual models from natural language supervision[C]. 38th International Conference on Machine Learning, 2021: 8748–8763. | 
| [192] | ZHOU Dawei, ZHANG Yuanhan, NING Jingyi,    et al. Learning without forgetting for vision-language models[J]. arXiv: 2305.19270, 2023. doi:  10.48550/arXiv.2305.19270. | 
| [193] | KHATTAK M U, WASIM S T, NASEER M,    et al. Self-regulating prompts: Foundational model adaptation without forgetting[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 15144–15154. doi:  10.1109/ICCV51070.2023.01394. | 
| [194] | KIM G, XIAO Changnan, KONISHI T,    et al. Learnability and algorithm for continual learning[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 16877–16896. | 
| [195] | TANG Yuming, PENG Yixing, and ZHENG Weishi. When prompt-based incremental learning does not meet strong pretraining[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 1706–1716. doi:  10.1109/ICCV51070.2023.00164. | 
| [196] | NGUYEN C V, LI Yingzhen, BUI T D,    et al. Variational continual learning[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018. | 
| [197] | KAPOOR S, KARALETSOS T, and BUI T D. Variational auto-regressive Gaussian processes for continual learning[C]. 38th International Conference on Machine Learning, 2021: 5290–5300. | 
| [198] | RAMESH R and CHAUDHARI P. Model zoo: A growing brain that learns continually[C]. Tenth International Conference on Learning Representations, 2022. | 
| [199] | WANG Liyuan, ZHANG Xingxing, LI Qian,    et al. CoSCL: Cooperation of small continual learners is stronger than a big one[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 254–271. doi:  10.1007/978-3-031-19809-0_15. | 
| [200] | YE Fei and BORS A G. Task-free continual learning via online discrepancy distance learning[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1720. | 
| [201] | SHI Haizhou and WANG Hao. A unified approach to domain incremental learning with memory: Theory and algorithm[C]. Thirty-Seventh Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 660. | 
| [202] | BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine Learning, 2010, 79(1/2): 151–175. doi:  10.1007/s10994-009-5152-4. | 
| [203] | JACOT A, GABRIEL F, and HONGLER C. Neural tangent kernel: Convergence and generalization in neural networks[C]. 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 2018: 8580–8589. | 
| [204] | BENNANI M A, DOAN T, and SUGIYAMA M. Generalisation guarantees for continual learning with orthogonal gradient descent[J]. arXiv: 2006.11942, 2020. doi:  10.48550/arXiv.2006.11942. | 
| [205] | DOAN T, BENNANI M A, MAZOURE B,    et al. A theoretical analysis of catastrophic forgetting through the NTK overlap matrix[C]. 24th International Conference on Artificial Intelligence and Statistics, 2021: 1072–1080. | 
| [206] | KARAKIDA R and AKAHO S. Learning curves for continual learning in neural networks: Self-knowledge transfer and forgetting[C]. Tenth International Conference on Learning Representations, 2022. | 
| [207] | EVRON I, MOROSHKO E, WARD R A,    et al. How catastrophic can catastrophic forgetting be in linear regression?[C]. 35th Conference on Learning Theory, London, UK, 2022: 4028–4079. | 
| [208] | LIN Sen, JU Peizhong, LIANG Yingbin,    et al. Theory on forgetting and generalization of continual learning[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 21078–21100. | 
| [209] | GOLDFARB D and HAND P. Analysis of catastrophic forgetting for random orthogonal transformation tasks in the overparameterized regime[C]. 26th International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 2023: 2975–2993. | 
| [210] | KIM G, XIAO Changnan, KONISHI T,    et al. A theoretical study on solving continual learning[C]. Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 366. | 
| [211] | KIM G, LIU Bing, and KE Zixuan. A multi-head model for continual learning via out-of-distribution replay[C]. 1st Conference on Lifelong Learning Agents, Montreal, Canada, 2022: 548–563. | 
| [212] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi:  10.1109/5.726791. | 
| [213] | KRIZHEVSKY A and HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4): 1–60. | 
| [214] | WAH C, BRANSON S, WELINDER P,    et al. The Caltech-UCSD birds-200-2011 dataset[R]. CNS-TR-2010-001, 2011. | 
| [215] | LE Ya and YANG Xuan. Tiny ImageNet visual recognition challenge[J]. CS 231N, 2015, 7(7): 3. | 
| [216] | DENG Jia, DONG Wei, SOCHER R,    et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi:  10.1109/CVPR.2009.5206848. | 
| [217] | EBRAHIMI S, MEIER F, CALANDRA R,    et al. Adversarial continual learning[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 386–402. doi:  10.1007/978-3-030-58621-8_23. | 
| [218] | LOMONACO V and MALTONI D. CORe50: A new dataset and benchmark for continuous object recognition[C]. 1st Annual Conference on Robot Learning, Mountain View, USA, 2017: 17–26. | 
| [219] | PENG Xingchao, BAI Qinxun, XIA Xide,    et al. Moment matching for multi-source domain adaptation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 1406–1415. doi:  10.1109/ICCV.2019.00149. | 
| [220] | LI Chuqiao, HUANG Zhiwu, PAUDEL D P,    et al. A continual deepfake detection benchmark: Dataset, methods, and essentials[C]. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2023: 1339–1349. doi:  10.1109/WACV56688.2023.00139. | 
| [221] | XIAO Han, RASUL K, and VOLLGRAF R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms[J]. arXiv: 1708.07747, 2017. doi:  10.48550/arXiv.1708.07747. | 
| [222] | NETZER Y, WANG Tao, COATES A,    et al. Reading digits in natural images with unsupervised feature learning[C]. Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 2011. | 
| [223] | BULATOV Y. Notmnist dataset[EB/OL]. http://yaroslavvb.blogspot.it/2011/09/notmnist-dataset.html, 2011. | 
| [224] | YANG Yuwei, HAYAT M, JIN Zhao,    et al. Geometry and uncertainty-aware 3D point cloud class-incremental semantic segmentation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 21759–21768. doi:  10.1109/CVPR52729.2023.02084. | 
| [225] | CAMUFFO E and MILANI S. Continual learning for LiDAR semantic segmentation: Class-incremental and coarse-to-fine strategies on sparse data[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 2447–2456. doi:  10.1109/CVPRW59228.2023.00243. | 
| [226] | CASTAGNOLO G, SPAMPINATO C, RUNDO F,    et al. A baseline on continual learning methods for video action recognition[C]. IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 2023: 3240–3244. doi:  10.1109/ICIP49359.2023.10222140. | 
| [227] | NAQUSHBANDI F S and JOHN A. Sequence of actions recognition using continual learning[C]. 2022 Second International Conference on Artificial Intelligence and Smart Energy, Coimbatore, India, 2022: 858–863. doi:  10.1109/ICAIS53314.2022.9742866. | 
| [228] | LI Dingcheng, CHEN Zheng, CHO E,    et al. Overcoming catastrophic forgetting during domain adaptation of Seq2seq language generation[C]. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, USA, 2022: 5441–5454. doi:  10.18653/v1/2022.naacl-main.398. | 
| [229] | MONAIKUL N, CASTELLUCCI G, FILICE S,    et al. Continual learning for named entity recognition[C]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 13570–13577. doi:  10.1609/aaai.v35i15.17600. | 
| [230] | LIU Qingbin, YU Xiaoyan, HE Shizhu,    et al. Lifelong intent detection via multi-strategy rebalancing[J]. arXiv: 2108.04445, 2021. doi:  10.48550/arXiv.2108.04445. | 
| [231] | MARACANI A, MICHIELI U, TOLDO M,    et al. RECALL: Replay-based continual learning in semantic segmentation[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 7006–7015. doi:  10.1109/ICCV48922.2021.00694. | 
| [232] | WANG Rui, YU Tong, ZHAO Handong,    et al. Few-shot class-incremental learning for named entity recognition[C]. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 2022: 571–582. doi:  10.18653/v1/2022.acl-long.43. | 
| [233] | GENG Binzong, YUAN Fajie, XU Qiancheng,    et al. Continual learning for task-oriented dialogue system with iterative network pruning, expanding and masking[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 517–523. doi:  10.18653/v1/2021.acl-short.66. | 
| [234] | CHEN Wuyang, ZHOU Yanqi, DU Nan,    et al. Lifelong language PRETRAINING with distribution-specialized experts[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 5383–5395. | 
| [235] | LUO Yun, YANG Zhen, MENG Fandong,    et al. An empirical study of catastrophic forgetting in large language models during continual fine-tuning[J]. arXiv: 2308.08747, 2023. doi:  10.48550/arXiv.2308.08747. | 
| [236] | QI Xiangyu, ZENG Yi, XIE Tinghao,    et al. Fine-tuning aligned language models compromises safety, even when users do not intend to![C]. Twelfth International Conference on Learning Representations, Vienna, Austria, 2024. | 
| [237] | SMITH J S, HSU Y C, ZHANG Lingyu,    et al. Continual diffusion: Continual customization of text-to-image diffusion with C-LoRA[J]. arXiv: 2304.06027, 2023. doi:  10.48550/arXiv.2304.06027. | 
| [238] | YANG Xin, YU Hao, GAO Xin,    et al. Federated continual learning via knowledge fusion: A survey[J]. arXiv: 2312.16475, 2023. doi:  10.48550/arXiv.2312.16475. | 
| [239] | LIU Xialei, HU Yusong, CAO Xusheng,    et al. Long-tailed class incremental learning[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 495–512. doi:  10.1007/978-3-031-19827-4_29. | 
