Citation: | ZHANG Dongyang, LU Zixuan, LIU Junmin, LI Lanyu. A Survey of Continual Learning with Deep Networks: Theory, Method and Application[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3849-3878. doi: 10.11999/JEIT240095 |
[1] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, USA, 2012: 1097–1105.
|
[2] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[3] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, Austria, 2021.
|
[4] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems (NIPS), Long Beach, USA, 2017: 6000–6010.
|
[5] |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]. The 34th International Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2020: 159.
|
[6] |
ABDEL-HAMID O, MOHAMED A R, JIANG Hui, et al. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533–1545. doi: 10.1109/TASLP.2014.2339736.
|
[7] |
ZHOU Kaiyang, LIU Ziwei, QIAO Yu, et al. Domain generalization: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4396–4415. doi: 10.1109/TPAMI.2022.3195549.
|
[8] |
WANG Yi, DING Yi, HE Xiangjian, et al. Novelty detection and online learning for chunk data streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2400–2412. doi: 10.1109/TPAMI.2020.2965531.
|
[9] |
HOI S C H, SAHOO D, LU Jing, et al. Online learning: A comprehensive survey[J]. Neurocomputing, 2021, 459: 249–289. doi: 10.1016/J.NEUCOM.2021.04.112.
|
[10] |
FRENCH R M. Catastrophic forgetting in connectionist networks[J]. Trends in Cognitive Sciences, 1999, 3(4): 128–135. doi: 10.1016/s1364-6613(99)01294-2.
|
[11] |
MCCLOSKEY M and COHEN N J. Catastrophic interference in connectionist networks: The sequential learning problem[J]. Psychology of Learning and Motivation, 1989, 24: 109–165.
|
[12] |
CICHON J and GAN Wenbiao. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity[J]. Nature, 2015, 520(7546): 180–185. doi: 10.1038/nature14251.
|
[13] |
ZENKE F, GERSTNER W, and GANGULI S. The temporal paradox of Hebbian learning and homeostatic plasticity[J]. Current Opinion in Neurobiology, 2017, 43: 166–176. doi: 10.1016/j.conb.2017.03.015.
|
[14] |
POWER J D and SCHLAGGAR B L. Neural plasticity across the lifespan[J]. WIREs Developmental Biology, 2017, 6(1): e216. doi: 10.1002/wdev.216.
|
[15] |
MCCLELLAND J L, MCNAUGHTON B L, and O'REILLY R C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory[J]. Psychological Review, 1995, 102(3): 419–457. doi: 10.1037/0033-295x.102.3.419.
|
[16] |
RATCLIFF R. Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions[J]. Psychological Review, 1990, 97(2): 285–308. doi: 10.1037/0033-295x.97.2.285.
|
[17] |
KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521–3526. doi: 10.1073/pnas.1611835114.
|
[18] |
HINTON G E and PLAUT D C. Using fast weights to deblur old memories[C]. Proceedings of the 9th Annual Conference of the Cognitive Science Society, Seattle, USA, 1987: 177–186.
|
[19] |
KAMRA N, GUPTA U, and LIU Yan. Deep generative dual memory network for continual learning[J]. arXiv: 1710.10368, 2017. doi: 10.48550/arXiv.1710.10368.
|
[20] |
ROBBINS H and MONRO S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951, 22(3): 400–407. doi: 10.1214/aoms/1177729586.
|
[21] |
LOPEZ-PAZ D and RANZATO M A. Gradient episodic memory for continual learning[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6470–6479.
|
[22] |
ZENG Guanxiong, CHEN Yang, CUI Bo, et al. Continual learning of context-dependent processing in neural networks[J]. Nature Machine Intelligence, 2019, 1(8): 364–372. doi: 10.1038/s42256-019-0080-x.
|
[23] |
MALLYA A and LAZEBNIK S. PackNet: Adding multiple tasks to a single network by iterative pruning[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7765–7773. doi: 10.1109/CVPR.2018.00810.
|
[24] |
YAN Shipeng, XIE Jiangwei, and HE Xuming. DER: Dynamically expandable representation for class incremental learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 3013–3022. doi: 10.1109/CVPR46437.2021.00303.
|
[25] |
DOUILLARD A, RAMÉ A, COUAIRON G, et al. DyTox: Transformers for continual learning with DYnamic TOken eXpansion[C]. IEEE/CVF International Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9275–9285. doi: 10.1109/CVPR52688.2022.00907.
|
[26] |
WANG Zifeng, ZHANG Zizhao, LEE C Y, et al. Learning to prompt for continual learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 139–149. doi: 10.1109/CVPR52688.2022.00024.
|
[27] |
HE Junxian, ZHOU Chunting, MA Xuezhe, et al. Towards a unified view of parameter-efficient transfer learning[C]. Tenth International Conference on Learning Representations, 2022.
|
[28] |
JIA Menglin, TANG Luming, CHEN B C, et al. Visual prompt tuning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 709–727. doi: 10.1007/978-3-031-19827-4_41.
|
[29] |
HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]. 36th International Conference on Machine Learning, Long Beach, USA, 2019: 2790–2799.
|
[30] |
HU E J, SHEN Yelong, WALLIS P, et al. LoRA: Low-rank adaptation of large language models[C]. Tenth International Conference on Learning Representations, 2022.
|
[31] |
LI X L and LIANG P. Prefix-tuning: Optimizing continuous prompts for generation[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021: 4582–4597. doi: 10.18653/v1/2021.acl-long.353.
|
[32] |
LESTER B, AL-RFOU R, and CONSTANT N. The power of scale for parameter-efficient prompt tuning[C]. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 2021: 3045–3059. doi: 10.18653/v1/2021.emnlp-main.243.
|
[33] |
PARISI G I, KEMKER R, PART J L, et al. Continual lifelong learning with neural networks: A review[J]. Neural Networks, 2019, 113: 54–71. doi: 10.1016/j.neunet.2019.01.012.
|
[34] |
DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: Defying forgetting in classification tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3366–3385. doi: 10.1109/tpami.2021.3057446.
|
[35] |
MASANA M, LIU Xialei, TWARDOWSKI B, et al. Class-incremental learning: Survey and performance evaluation on image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5513–5533. doi: 10.1109/tpami.2022.3213473.
|
[36] |
BELOUADAH E, POPESCU A, and KANELLOS I. A comprehensive study of class incremental learning algorithms for visual tasks[J]. Neural Networks, 2021, 135: 38–54. doi: 10.1016/j.neunet.2020.12.003.
|
[37] |
朱飞, 张煦尧, 刘成林. 类别增量学习研究进展和性能评价[J]. 自动化学报, 2023, 49(3): 635–660. doi: 10.16383/j.aas.c220588.
ZHU Fei, ZHANG Xuyao, and LIU Chenglin. Class incremental learning: A review and performance evaluation[J]. Acta Automatica Sinica, 2023, 49(3): 635–660. doi: 10.16383/j.aas.c220588.
|
[38] |
MERMILLOD M, BUGAISKA A, and BONIN P. The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects[J]. Frontiers in Psychology, 2013, 4: 504. doi: 10.3389/fpsyg.2013.00504.
|
[39] |
VAN DE VEN G M and TOLIAS A S. Three scenarios for continual learning[J]. arXiv: 1904.07734, 2019. doi: 10.48550/arXiv.1904.07734.
|
[40] |
BUZZEGA P, BOSCHINI M, PORRELLO A, et al. Dark experience for general continual learning: A strong, simple baseline[C]. The 34th International Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2020: 1335.
|
[41] |
MAI Zheda, LI Ruiwen, JEONG J, et al. Online continual learning in image classification: An empirical survey[J]. Neurocomputing, 2022, 469: 28–51. doi: 10.1016/j.neucom.2021.10.021.
|
[42] |
GOODFELLOW I J, MIRZA M, XIAO Da, et al. An empirical investigation of catastrophic forgetting in gradient-based neural networks[J]. arXiv: 1312.6211, 2013. doi: 10.48550/arXiv.1312.6211.
|
[43] |
SHMELKOV K, SCHMID C, and ALAHARI K. Incremental learning of object detectors without catastrophic forgetting[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3420–3429. doi: 10.1109/ICCV.2017.368.
|
[44] |
LI Dawei, TASCI S, GHOSH S, et al. RILOD: Near real-time incremental learning for object detection at the edge[C]. The 4th ACM/IEEE Symposium on Edge Computing, Arlington, USA, 2019: 113–126. doi: 10.1145/3318216.3363317.
|
[45] |
PENG Can, ZHAO Kun, MAKSOUD S, et al. SID: Incremental learning for anchor-free object detection via Selective and Inter-related Distillation[J]. Computer Vision and Image Understanding, 2021, 210: 103229. doi: 10.1016/j.cviu.2021.103229.
|
[46] |
商迪, 吕彦锋, 乔红. 受人脑中记忆机制启发的增量目标检测方法[J]. 计算机科学, 2023, 50(2): 267–274. doi: 10.11896/jsjkx.220900212.
SHANG Di, LYU Yanfeng, and QIAO Hong. Incremental object detection inspired by memory mechanisms in brain[J]. Computer Science, 2023, 50(2): 267–274. doi: 10.11896/jsjkx.220900212.
|
[47] |
CERMELLI F, MANCINI M, BULÒ S R, et al. Modeling the background for incremental learning in semantic segmentation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9230–9239. doi: 10.1109/CVPR42600.2020.00925.
|
[48] |
DOUILLARD A, CHEN Yifu, DAPOGNY A, et al. PLOP: Learning without forgetting for continual semantic segmentation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 4039–4049. doi: 10.1109/CVPR46437.2021.00403.
|
[49] |
YAN Shipeng, ZHOU Jiale, XIE Jiangwei, et al. An EM framework for online incremental learning of semantic segmentation[C]. Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 3052–3060. doi: 10.1145/3474085.3475443.
|
[50] |
MICHIELI U and ZANUTTIGH P. Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 1114–1124. doi: 10.1109/CVPR46437.2021.00117.
|
[51] |
YANG Guanglei, FINI E, XU Dan, et al. Uncertainty-aware contrastive distillation for incremental semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2567–2581. doi: 10.1109/TPAMI.2022.3163806.
|
[52] |
ZHAI Mengyao, CHEN Lei, TUNG F, et al. Lifelong GAN: Continual learning for conditional image generation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 2759–2768. doi: 10.1109/ICCV.2019.00285.
|
[53] |
Zając M, Deja K, Kuzina A, et al. Exploring continual learning of diffusion models[J]. arxiv:2303.15342, 2023. doi: 10.48550/arXiv.2303.15342.
|
[54] |
ZHAI Mengyao, CHEN Lei, HE Jiawei, et al. Piggyback GAN: Efficient lifelong learning for image conditioned generation[C]. The 17th European Conference on Computer Vision, Glasgow, UK, 2020: 397–413. doi: 10.1007/978-3-030-58589-1_24.
|
[55] |
WANG Liyuan, YANG Kuo, LI Chongxuan, et al. ORDisCo: Effective and efficient usage of incremental unlabeled data for semi-supervised continual learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5379–5388. doi: 10.1109/CVPR46437.2021.00534.
|
[56] |
YOON J, HWANG S J, and CAO Yue. Continual learners are incremental model generalizers[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 40129–40146.
|
[57] |
HU Dapeng, YAN Shipeng, LU Qizhengqiu, et al. How well does self-supervised pre-training perform with streaming data?[C]. Tenth International Conference on Learning Representations, 2022.
|
[58] |
COSSU A, CARTA A, PASSARO L, et al. Continual pre-training mitigates forgetting in language and vision[J]. Neural Networks, 2024, 179: 106492. doi: 10.1016/j.neunet.2024.106492.
|
[59] |
CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41–75. doi: 10.1023/A:1007379606734.
|
[60] |
HOSPEDALES T, ANTONIOU A, MICAELLI P, et al. Meta-learning in neural networks: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5149–5169. doi: 10.1109/TPAMI.2021.3079209.
|
[61] |
WEISS K, KHOSHGOFTAAR T M, and WANG Dingding. A survey of transfer learning[J]. Journal of Big data, 2016, 3(1): 9. doi: 10.1186/s40537-016-0043-6.
|
[62] |
PATEL V M, GOPALAN R, LI Ruonan, et al. Visual domain adaptation: A survey of recent advances[J]. IEEE Signal Processing Magazine, 2015, 32(3): 53–69. doi: 10.1109/MSP.2014.2347059.
|
[63] |
WANG Jindong, LAN Cuiling, LIU Chang, et al. Generalizing to unseen domains: A survey on domain generalization[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8052–8072. doi: 10.1109/TKDE.2022.3178128.
|
[64] |
REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental classifier and representation learning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5533–5542. doi: 10.1109/CVPR.2017.587.
|
[65] |
HUSZÁR F. Note on the quadratic penalties in elastic weight consolidation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): E2496–E2497. doi: 10.1073/pnas.1717042115.
|
[66] |
LIU Xialei, MASANA M, HERRANZ L, et al. Rotate your networks: Better weight consolidation and less catastrophic forgetting[C]. The 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018: 2262–2268. doi: 10.1109/ICPR.2018.8545895.
|
[67] |
RITTER H, BOTEV A, and BARBER D. Online structured Laplace approximations for overcoming catastrophic forgetting[C]. The 32nd International Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2018: 3742–3752.
|
[68] |
ZENKE F, POOLE B, and GANGULI S. Continual learning through synaptic intelligence[C]. The 34th International Conference on Machine Learning (ICML), Sydney, Australia, 2017: 3987–3995.
|
[69] |
ALJUNDI R, BABILONI F, ELHOSEINY M, et al. Memory aware synapses: Learning what (not) to forget[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 144–161. doi: 10.1007/978-3-030-01219-9_9.
|
[70] |
CHAUDHRY A, DOKANIA P K, AJANTHAN T, et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 556–572. doi: 10.1007/978-3-030-01252-6_33.
|
[71] |
LEE S W, KIM J H, JUN J, et al. Overcoming catastrophic forgetting by incremental moment matching[C]. The 31st International Conference on Neural Information Processing Systems (NIPS), Long Beach, USA, 2017: 4655–4665.
|
[72] |
BENZING F. Unifying importance based regularisation methods for continual learning[C]. The 25th International Conference on Artificial Intelligence and Statistics (ICAIS), 2022: 2372–2396.
|
[73] |
HINTON G, VINYALS O, and DEAN J. Distilling the knowledge in a neural network[J]. arXiv: 1503.02531, 2015. doi: 10.48550/arXiv.1503.02531.
|
[74] |
LI Zhizhong and HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935–2947. doi: 10.1109/TPAMI.2017.2773081.
|
[75] |
HOU Saihui, PAN Xinyu, LOY C C, et al. Learning a unified classifier incrementally via rebalancing[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 831–839. doi: 10.1109/CVPR.2019.00092.
|
[76] |
DHAR P, SINGH R V, PENG Kuanchuan, et al. Learning without memorizing[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 5133–5141. doi: 10.1109/CVPR.2019.00528.
|
[77] |
KANG M, PARK J, and HAN B. Class-incremental learning by knowledge distillation with adaptive feature consolidation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 16050–16059. doi: 10.1109/CVPR52688.2022.01560.
|
[78] |
DOUILLARD A, CORD M, OLLION C, et al. PODNet: Pooled outputs distillation for small-tasks incremental learning[C]. The 16th European Conference on Computer Vision (ECCV), Glasgow, UK, 2020: 86–102. doi: 10.1007/978-3-030-58565-5_6.
|
[79] |
SIMON C, KONIUSZ P, and HARANDI M. On learning the geodesic path for incremental learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 1591–1600. doi: 10.1109/CVPR46437.2021.00164.
|
[80] |
GAO Qiankun, ZHAO Chen, GHANEM B, et al. R-DFCIL: Relation-guided representation learning for data-free class incremental learning[C]. The 17th European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 2022: 423–439. doi: 10.1007/978-3-031-20050-2_25.
|
[81] |
TAO Xiaoyu, CHANG Xinyuan, HONG Xiaopeng, et al. Topology-preserving class-incremental learning[C]. The 16th European Conference on Computer Vision (ECCV), Glasgow, UK, 2020: 254–270. doi: 10.1007/978-3-030-58529-7_16.
|
[82] |
TAO Xiaoyu, HONG Xiaopeng, CHANG Xinyuan, et al. Few-shot class-incremental learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 12180–12189. doi: 10.1109/CVPR42600.2020.01220.
|
[83] |
MARTINETZ T M and SCHULTEN K J. A "neural-gas" network learns topologies[M]. KOHONEN T, MÄKISARA K, SIMULA O, et al. Artificial Neural Networks. Amsterdam: North-Holland, 1991: 397–402.
|
[84] |
LIU Yu, HONG Xiaopeng, TAO Xiaoyu, et al. Model behavior preserving for class-incremental learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7529–7540. doi: 10.1109/TNNLS.2022.3144183.
|
[85] |
ASADI N, DAVARI M R, MUDUR S, et al. Prototype-sample relation distillation: Towards replay-free continual learning[C]. The 40th International Conference on Machine Learning, Honolulu, USA, 2023: 1093–1106.
|
[86] |
ARANI E, SARFRAZ F, and ZONOOZ B. Learning fast, learning slow: A general continual learning method based on complementary learning system[C]. The Tenth International Conference on Learning Representations (ICLR), 2022.
|
[87] |
VIJAYAN P, BHAT P, ZONOOZ B, et al. TriRE: A multi-mechanism learning paradigm for continual knowledge retention and promotion[C]. The 37th Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 3226.
|
[88] |
JEEVESWARAN K, BHAT P S, ZONOOZ B, et al. BiRT: Bio-inspired replay in vision transformers for continual learning[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 14817–14835.
|
[89] |
ZHU Fei, ZHANG Xuyao, WANG Chuang, et al. Prototype augmentation and self-supervision for incremental learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5867–5876. doi: 10.1109/CVPR46437.2021.00581.
|
[90] |
SZATKOWSKI F, PYLA M, PRZEWIĘŹLIKOWSKI M, et al. Adapt your teacher: Improving knowledge distillation for exemplar-free continual learning[C]. IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2024: 1966–1976. doi: 10.1109/WACV57701.2024.00198.
|
[91] |
LIANG Yanshuo and LI Wujun. Loss decoupling for task-agnostic continual learning[C]. The 37th International Conference on Neural Information Processing Systems (NIPS), New Orleans, USA, 2023: 492.
|
[92] |
WU Yue, CHEN Yinpeng, WANG Lijuan, et al. Large scale incremental learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 374–382. doi: 10.1109/CVPR.2019.00046.
|
[93] |
ZHAO Bowen, XIAO Xi, GAN Guojun, et al. Maintaining discrimination and fairness in class incremental learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 13205–13214. doi: 10.1109/CVPR42600.2020.01322.
|
[94] |
GOSWAMI D, LIU Yuyang, TWARDOWSKI B, et al. FeCAM: Exploiting the heterogeneity of class distributions in exemplar-free continual learning[C]. The 37th Conference on Neural Information Processing Systems (NIPS), New Orleans, USA, 2023: 288.
|
[95] |
XIANG Xiang, TAN Yuwen, WAN Qian, et al. Coarse-to-fine incremental few-shot learning[C]. The 17th European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 2022: 205–222. doi: 10.1007/978-3-031-19821-2_12.
|
[96] |
AHN H, KWAK J, LIM S, et al. SS-IL: Separated softmax for incremental learning[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 824–833. doi: 10.1109/ICCV48922.2021.00088.
|
[97] |
YANG Yibo, CHEN Shixiang, LI Xiangtai, et al. Inducing neural collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep neural network?[C]. The 36th Conference on Neural Information Processing Systems (NIPS), New Orleans, USA, 2022: 2753.
|
[98] |
YANG Yibo, YUAN Haobo, LI Xiangtai, et al. Neural collapse inspired feature-classifier alignment for few-shot class-incremental learning[C]. The 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, 2023.
|
[99] |
LYU Yilin, WANG Liyuan, ZHANG Xingxing, et al. Overcoming recency bias of normalization statistics in continual learning: Balance and adaptation[C]. The 37th Conference on Neural Information Processing Systems (NIPS), New Orleans, USA, 2023: 1108.
|
[100] |
GUO Chengcheng, ZHAO Bo, and BAI Yanbing. DeepCore: A comprehensive library for coreset selection in deep learning[C]. 33rd International Conference on Database and Expert Systems Applications, Vienna, Austria, 2022: 181–195. doi: 10.1007/978-3-031-12423-5_14.
|
[101] |
FELDMAN D. Introduction to core-sets: An updated survey[J]. arXiv: 2011.09384, 2020. doi: 10.48550/arXiv.2011.09384.
|
[102] |
CHEN Yutian, WELLING M, and SMOLA A J. Super-samples from kernel herding[C]. 26th Conference on Uncertainty in Artificial Intelligence, Catalina Island, USA, 2010: 109–116.
|
[103] |
WELLING M. Herding dynamical weights to learn[C]. The 26th Annual International Conference on Machine Learning, Montreal, Canada, 2009: 1121–1128. doi: 10.1145/1553374.1553517.
|
[104] |
CHAUDHRY A, ROHRBACH M, ELHOSEINY M, et al. On tiny episodic memories in continual learning[J]. arXiv: 1902.10486, 2019. doi: 10.48550/arXiv.1902.10486.
|
[105] |
YOON J, MADAAN D, YANG E, et al. Online coreset selection for rehearsal-based continual learning[C]. Tenth International Conference on Learning Representations, 2022.
|
[106] |
ALJUNDI R, CACCIA L, BELILOVSKY E, et al. Online continual learning with maximally interfered retrieval[C]. The 33rd International Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2019: 1063.
|
[107] |
BANG J, KIM H, YOO Y J, et al. Rainbow memory: Continual learning with a memory of diverse samples[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 8214–8223. doi: 10.1109/CVPR46437.2021.00812.
|
[108] |
BORSOS Z, MUTNÝ M, and KRAUSE A. Coresets via bilevel optimization for continual learning and Streaming[C]. The 34th International Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2020: 1247.
|
[109] |
ZHOU Xiao, PI Renjie, ZHANG Weizhong, et al. Probabilistic bilevel coreset selection[C]. 39th International Conference on Machine Learning, Baltimore, USA, 2022: 27287–27302.
|
[110] |
TIWARI R, KILLAMSETTY K, IYER R, et al. GCR: Gradient coreset based replay buffer selection for continual learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 99–108. doi: 10.1109/CVPR52688.2022.00020.
|
[111] |
HAO Jie, JI Kaiyi, and LIU Mingrui. Bilevel coreset selection in continual learning: A new formulation and algorithm[C]. The 37th Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 2220.
|
[112] |
WANG Tongzhou, ZHU Junyan, TORRALBA A, et al. Dataset distillation[J]. arXiv: 1811.10959, 2018. doi: 10.48550/arXiv.1811.10959.
|
[113] |
YU Ruonan, LIU Songhua, and WANG Xinchao. Dataset distillation: A comprehensive review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(1): 150–170. doi: 10.1109/TPAMI.2023.3323376.
|
[114] |
LIU Yaoyao, SU Yuting, LIU Anan, et al. Mnemonics training: Multi-class incremental learning without forgetting[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12242–12251. doi: 10.1109/CVPR42600.2020.01226.
|
[115] |
ZHAO Bo, MOPURI K R, and BILEN H. Dataset condensation with gradient matching[C]. The 9th International Conference on Learning Representations, Austria, 2021.
|
[116] |
ZHAO Bo and BILEN H. Dataset condensation with differentiable Siamese augmentation[C]. The 38th International Conference on Machine Learning, 2021: 12674–12685.
|
[117] |
YANG Enneng, SHEN Li, WANG Zhenyi, et al. An efficient dataset condensation plugin and its application to continual learning[C]. The 37th Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 2957.
|
[118] |
CACCIA L, BELILOVSKY E, CACCIA M, et al. Online learned continual compression with adaptive quantization modules[C]. The 37th International Conference on Machine Learning, 2020: 1240–1250.
|
[119] |
VAN DEN OORD A, VINYALS O, and KAVUKCUOGLU K. Neural discrete representation learning[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6309–6318.
|
[120] |
WANG Liyuan, ZHANG Xingxing, YANG Kuo, et al. Memory replay with data compression for continual learning[C]. Tenth International Conference on Learning Representations, 2022.
|
[121] |
KULESZA A and TASKAR B. Determinantal point processes for machine learning[J]. Foundations and Trends® in Machine Learning, 2012, 5(2/3): 123–286. doi: 10.1561/2200000044.
|
[122] |
LUO Zilin, LIU Yaoyao, SCHIELE B, et al. Class-incremental exemplar compression for class-incremental learning[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 11371–11380. doi: 10.1109/CVPR52729.2023.01094.
|
[123] |
ZHAI Jiangtian, LIU Xialei, BAGDANOV A D, et al. Masked autoencoders are efficient class incremental learners[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19047–19056. doi: 10.1109/ICCV51070.2023.01750.
|
[124] |
HE Kaiming, CHEN Xinlei, XIE Saining, et al. Masked autoencoders are scalable vision learners[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 15979–15988. doi: 10.1109/CVPR52688.2022.01553.
|
[125] |
ISCEN A, ZHANG J, LAZEBNIK S, et al. Memory-efficient incremental learning through feature adaptation[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 699–715. doi: 10.1007/978-3-030-58517-4_41.
|
[126] |
BELOUADAH E and POPESCU A. IL2M: Class incremental learning with dual memory[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 583–592. doi: 10.1109/ICCV.2019.00067.
|
[127] |
TOLDO M and OZAY M. Bring evanescent representations to life in lifelong class incremental learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16711–16720. doi: 10.1109/CVPR52688.2022.01623.
|
[128] |
WANG Kai, VAN DE WEIJER J, and HERRANZ L. ACAE-REMIND for online continual learning with compressed feature replay[J]. Pattern Recognition Letters, 2021, 150: 122–129. doi: 10.1016/j.patrec.2021.06.025.
|
[129] |
PETIT G, POPESCU A, SCHINDLER H, et al. FeTrIL: Feature translation for exemplar-free class-incremental learning[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 3900–3909. doi: 10.1109/WACV56688.2023.00390.
|
[130] |
ZHU Fei, CHENG Zhen, ZHANG Xuyao, et al. Class-incremental learning via dual augmentation[C]. The 35th International Conference on Neural Information Processing Systems (NIPS), 2021: 1096.
|
[131] |
ZHU Kai, ZHAI Wei, CAO Yang, et al. Self-sustaining representation expansion for non-exemplar class-incremental learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9286–9395. doi: 10.1109/CVPR52688.2022.00908.
|
[132] |
SHI Wuxuan and YE Mang. Prototype reminiscence and augmented asymmetric knowledge aggregation for non-exemplar class-incremental learning[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 1772–1781. doi: 10.1109/ICCV51070.2023.00170.
|
[133] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
[134] |
KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
[135] |
HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574.
|
[136] |
SHIN H, LEE J K, KIM J, et al. Continual learning with deep generative replay[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 2994–3003.
|
[137] |
WU Chenshen, HERRANZ L, LIU Xialei, et al. Memory replay GANs: Learning to generate images from new categories without forgetting[C]. The 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 2018: 5966–5976.
|
[138] |
HE Chen, WANG Ruiping, SHAN Shiguang, et al. Exemplar-supported generative reproduction for class incremental learning[C]. British Machine Vision Conference 2018, Newcastle, UK, 2018: 98.
|
[139] |
KEMKER R and KANAN C. FearNet: Brain-inspired model for incremental learning[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–15.
|
[140] |
YE Fei and BORS A G. Learning latent representations across multiple data domains using lifelong VAEGAN[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 777–795. doi: 10.1007/978-3-030-58565-5_46.
|
[141] |
GAO Rui and LIU Weiwei. DDGR: Continual learning with deep diffusion-based generative replay[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 10744–10763.
|
[142] |
JODELET Q, LIU Xin, PHUA Y J, et al. Class-incremental learning using diffusion model for distillation and replay[C]. 2023 IEEE/CVF International Conference on Computer Vision Workshops, Paris, France, 2023: 3417–3425. doi: 10.1109/ICCVW60793.2023.00367.
|
[143] |
XIANG Ye, FU Ying, JI Pan, et al. Incremental learning using conditional adversarial networks[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 6618–6627. doi: 10.1109/ICCV.2019.00672.
|
[144] |
VAN DE VEN G M, SIEGELMANN H T, and TOLIAS A S. Brain-inspired replay for continual learning with artificial neural networks[J]. Nature Communications, 2020, 11(1): 4069. doi: 10.1038/s41467-020-17866-2.
|
[145] |
LIU Xialei, WU Chenshen, MENTA M, et al. Generative feature replay for class-incremental learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 915–924. doi: 10.1109/CVPRW50498.2020.00121.
|
[146] |
CHAUDHRY A, RANZATO M A, ROHRBACH M, et al. Efficient lifelong learning with A-GEM[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[147] |
RIEMER M, CASES I, AJEMIAN R, et al. Learning to learn without forgetting by maximizing transfer and minimizing interference[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[148] |
FARAJTABAR M, AZIZAN N, MOTT A, et al. Orthogonal gradient descent for continual learning[C]. 23rd International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 2020: 3762–3773.
|
[149] |
TANG Shixiang, CHEN Dapeng, ZHU Jinguo, et al. Layerwise optimization by gradient decomposition for continual learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 9629–9638. doi: 10.1109/CVPR46437.2021.00951.
|
[150] |
KAO T C, JENSEN K T, VAN DE VEN G M, et al. Natural continual learning: Success is a journey, not (just) a destination[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 2150.
|
[151] |
LIU Hao and LIU Huaping. Continual learning with recursive gradient optimization[C]. Tenth International Conference on Learning Representations, 2022.
|
[152] |
SAHA G, GARG I, and ROY K. Gradient projection memory for continual learning[C]. 9th International Conference on Learning Representations, Austria, 2021.
|
[153] |
WANG Shipeng, LI Xiaorong, SUN Jian, et al. Training networks in null space of feature covariance for continual learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 184–193. doi: 10.1109/CVPR46437.2021.00025.
|
[154] |
KONG Yajing, LIU Liu, WANG Zhen, et al. Balancing stability and plasticity through advanced null space in continual learning[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 219–236. doi: 10.1007/978-3-031-19809-0_13.
|
[155] |
LIN Sen, YANG Li, FAN Deliang, et al. TRGP: Trust region gradient projection for continual learning[C]. Tenth International Conference on Learning Representations, 2022.
|
[156] |
LIN Sen, YANG Li, FAN Deliang, et al. Beyond not-forgetting: Continual learning with backward knowledge transfer[C]. The 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1176.
|
[157] |
HOCHREITER S and SCHMIDHUBER J. Flat minima[J]. Neural Computation, 1997, 9(1): 1–42. doi: 10.1162/neco.1997.9.1.1.
|
[158] |
KESKAR N S, MUDIGERE D, NOCEDAL J, et al. On large-batch training for deep learning: Generalization gap and sharp minima[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[159] |
FORET P, KLEINER A, MOBAHI H, et al. Sharpness-aware minimization for efficiently improving generalization[C]. 9th International Conference on Learning Representations, Austria, 2021.
|
[160] |
HUANG Zhongzhan, LIANG Mingfu, LIANG Senwei, et al. AlterSGD: Finding flat minima for continual learning by alternative training[J]. arXiv: 2107.05804, 2021. doi: 10.48550/arXiv.2107.05804.
|
[161] |
SHI Guangyuan, CHEN Jiaxin, ZHANG Wenlong, et al. Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima[C]. The 35th Conference on Neural Information Processing Systems, 2021: 517.
|
[162] |
DENG Danruo, CHEN Guangyong, HAO Jianye, et al. Flattening sharpness for dynamic gradient projection memory benefits continual learning[C]. 35th International Conference on Neural Information Processing System, 2021: 1430.
|
[163] |
LIU Yong, MAI Siqi, CHEN Xiangning, et al. Towards efficient and scalable sharpness-aware minimization[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12350–12360. doi: 10.1109/CVPR52688.2022.01204.
|
[164] |
WU Tao, LUO Tie, and WUNSCH II D C. CR-SAM: Curvature regularized sharpness-aware minimization[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 6144–6152. doi: 10.1609/aaai.v38i6.28431.
|
[165] |
MADAAN D, YOON J, LI Yuanchun, et al. Representational continuity for unsupervised continual learning[C]. Tenth International Conference on Learning Representations, 2022.
|
[166] |
CHA H, LEE J, and SHIN J. Co2L: Contrastive continual learning[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9496–9505. doi: 10.1109/ICCV48922.2021.00938.
|
[167] |
FINI E, DA COSTA V G T, ALAMEDA-PINEDA X, et al. Self-supervised models are continual learners[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9611–9620. doi: 10.1109/CVPR52688.2022.00940.
|
[168] |
AHN H, CHA S, LEE D, et al. Uncertainty-based continual learning with adaptive regularization[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 395.
|
[169] |
GURBUZ M B and DOVROLIS C. NISPA: Neuro-inspired stability-plasticity adaptation for continual learning in sparse networks[C]. The 39th International Conference on Machine Learning, Baltimore, USA, 2022: 8157–8174.
|
[170] |
JIN H and KIM E. Helpful or harmful: Inter-task association in continual learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 519–535. doi: 10.1007/978-3-031-20083-0_31.
|
[171] |
XUE Mengqi, ZHANG Haofei, SONG Jie, et al. Meta-attention for ViT-backed continual learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 150–159. doi: 10.1109/CVPR52688.2022.00025.
|
[172] |
JANG E, GU Shixiang, and POOLE B. Categorical reparameterization with gumbel-softmax[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[173] |
SERRÀ J, SURIS D, MIRON M, et al. Overcoming catastrophic forgetting with hard attention to the task[C]. 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 4548–4557.
|
[174] |
WORTSMAN M, RAMANUJAN V, LIU R, et al. Supermasks in superposition[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1272.
|
[175] |
KANG H, MINA R J L, MADJID S R H, et al. Forget-free continual learning with winning subnetworks[C]. 39th International Conference on Machine Learning, Baltimore, USA, 2022: 10734–10750.
|
[176] |
YOON J, YANG E, LEE J, et al. Lifelong learning with dynamically expandable networks[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–15.
|
[177] |
XU Ju and ZHU Zhanxing. Reinforced continual learning[C]. The 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 2018: 907–916.
|
[178] |
RUSU A A, RABINOWITZ N C, DESJARDINS G, et al. Progressive neural networks[J]. arXiv: 1606.04671, 2016. doi: 10.48550/arXiv.1606.04671.
|
[179] |
FERNANDO C, BANARSE D, BLUNDELL C, et al. PathNet: Evolution channels gradient descent in super neural networks[J]. arXiv: 1701.08734, 2017. doi: 10.48550/arXiv.1701.08734.
|
[180] |
RAJASEGARAN J, HAYAT M, KHAN S, et al. Random path selection for incremental learning[J]. arXiv: 1906.01120, 2019. doi: 10.48550/arXiv.1906.01120.
|
[181] |
ALJUNDI R, CHAKRAVARTY P, and TUYTELAARS T. Expert gate: Lifelong learning with a network of experts[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7120–7129. doi: 10.1109/CVPR.2017.753.
|
[182] |
WANG Fuyun, ZHOU Dawei, YE Hanjia, et al. FOSTER: Feature boosting and compression for class-incremental learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 398–414. doi: 10.1007/978-3-031-19806-9_23.
|
[183] |
ZHOU Dawei, WANG Qiwei, YE Hanjia, et al. A model or 603 exemplars: Towards memory-efficient class-incremental learning[C]. The 11th International Conference on Learning Representations, Kigali, Rwanda, 2023.
|
[184] |
WANG Zifeng, ZHANG Zizhao, EBRAHIMI S, et al. DualPrompt: Complementary prompting for rehearsal-free continual learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 631–648. doi: 10.1007/978-3-031-19809-0_36.
|
[185] |
SMITH J S, KARLINSKY L, GUTTA V, et al. CODA-Prompt: COntinual decomposed attention-based prompting for rehearsal-free continual learning[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 11909–11919. doi: 10.1109/CVPR52729.2023.01146.
|
[186] |
GAO Qiankun, ZHAO Chen, SUN Yifan, et al. A unified continual learning framework with general parameter-efficient tuning[C]. IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 11449–11459. doi: 10.1109/ICCV51070.2023.01055.
|
[187] |
ZHOU Dawei, CAI Ziwen, YE Hanjia, et al. Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need[J]. arXiv: 2303.07338, 2023. doi: 10.48550/arXiv.2303.07338.
|
[188] |
WANG Yabin, MA Zhiheng, HUANG Zhiwu, et al. Isolation and impartial aggregation: A paradigm of incremental learning without interference[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 10209–10217. doi: 10.1609/aaai.v37i8.26216.
|
[189] |
WANG Liyuan, XIE Jingyi, ZHANG Xingxing, et al. Hierarchical decomposition of prompt-based continual learning: Rethinking obscured sub-optimality[C]. The 37th Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 3022.
|
[190] |
WANG Yabin, HUANG Zhiwu, and HONG Xiaopeng. S-prompts learning with pre-trained transformers: An Occam’s razor for domain incremental learning[C]. The 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 411.
|
[191] |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]. 38th International Conference on Machine Learning, 2021: 8748–8763.
|
[192] |
ZHOU Dawei, ZHANG Yuanhan, NING Jingyi, et al. Learning without forgetting for vision-language models[J]. arXiv: 2305.19270, 2023. doi: 10.48550/arXiv.2305.19270.
|
[193] |
KHATTAK M U, WASIM S T, NASEER M, et al. Self-regulating prompts: Foundational model adaptation without forgetting[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 15144–15154. doi: 10.1109/ICCV51070.2023.01394.
|
[194] |
KIM G, XIAO Changnan, KONISHI T, et al. Learnability and algorithm for continual learning[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 16877–16896.
|
[195] |
TANG Yuming, PENG Yixing, and ZHENG Weishi. When prompt-based incremental learning does not meet strong pretraining[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 1706–1716. doi: 10.1109/ICCV51070.2023.00164.
|
[196] |
NGUYEN C V, LI Yingzhen, BUI T D, et al. Variational continual learning[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[197] |
KAPOOR S, KARALETSOS T, and BUI T D. Variational auto-regressive Gaussian processes for continual learning[C]. 38th International Conference on Machine Learning, 2021: 5290–5300.
|
[198] |
RAMESH R and CHAUDHARI P. Model zoo: A growing brain that learns continually[C]. Tenth International Conference on Learning Representations, 2022.
|
[199] |
WANG Liyuan, ZHANG Xingxing, LI Qian, et al. CoSCL: Cooperation of small continual learners is stronger than a big one[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 254–271. doi: 10.1007/978-3-031-19809-0_15.
|
[200] |
YE Fei and BORS A G. Task-free continual learning via online discrepancy distance learning[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1720.
|
[201] |
SHI Haizhou and WANG Hao. A unified approach to domain incremental learning with memory: Theory and algorithm[C]. Thirty-Seventh Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 660.
|
[202] |
BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine Learning, 2010, 79(1/2): 151–175. doi: 10.1007/s10994-009-5152-4.
|
[203] |
JACOT A, GABRIEL F, and HONGLER C. Neural tangent kernel: Convergence and generalization in neural networks[C]. 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 2018: 8580–8589.
|
[204] |
BENNANI M A, DOAN T, and SUGIYAMA M. Generalisation guarantees for continual learning with orthogonal gradient descent[J]. arXiv: 2006.11942, 2020. doi: 10.48550/arXiv.2006.11942.
|
[205] |
DOAN T, BENNANI M A, MAZOURE B, et al. A theoretical analysis of catastrophic forgetting through the NTK overlap matrix[C]. 24th International Conference on Artificial Intelligence and Statistics, 2021: 1072–1080.
|
[206] |
KARAKIDA R and AKAHO S. Learning curves for continual learning in neural networks: Self-knowledge transfer and forgetting[C]. Tenth International Conference on Learning Representations, 2022.
|
[207] |
EVRON I, MOROSHKO E, WARD R A, et al. How catastrophic can catastrophic forgetting be in linear regression?[C]. 35th Conference on Learning Theory, London, UK, 2022: 4028–4079.
|
[208] |
LIN Sen, JU Peizhong, LIANG Yingbin, et al. Theory on forgetting and generalization of continual learning[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 21078–21100.
|
[209] |
GOLDFARB D and HAND P. Analysis of catastrophic forgetting for random orthogonal transformation tasks in the overparameterized regime[C]. 26th International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 2023: 2975–2993.
|
[210] |
KIM G, XIAO Changnan, KONISHI T, et al. A theoretical study on solving continual learning[C]. Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 366.
|
[211] |
KIM G, LIU Bing, and KE Zixuan. A multi-head model for continual learning via out-of-distribution replay[C]. 1st Conference on Lifelong Learning Agents, Montreal, Canada, 2022: 548–563.
|
[212] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
|
[213] |
KRIZHEVSKY A and HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4): 1–60.
|
[214] |
WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD birds-200-2011 dataset[R]. CNS-TR-2010-001, 2011.
|
[215] |
LE Ya and YANG Xuan. Tiny ImageNet visual recognition challenge[J]. CS 231N, 2015, 7(7): 3.
|
[216] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
|
[217] |
EBRAHIMI S, MEIER F, CALANDRA R, et al. Adversarial continual learning[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 386–402. doi: 10.1007/978-3-030-58621-8_23.
|
[218] |
LOMONACO V and MALTONI D. CORe50: A new dataset and benchmark for continuous object recognition[C]. 1st Annual Conference on Robot Learning, Mountain View, USA, 2017: 17–26.
|
[219] |
PENG Xingchao, BAI Qinxun, XIA Xide, et al. Moment matching for multi-source domain adaptation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 1406–1415. doi: 10.1109/ICCV.2019.00149.
|
[220] |
LI Chuqiao, HUANG Zhiwu, PAUDEL D P, et al. A continual deepfake detection benchmark: Dataset, methods, and essentials[C]. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2023: 1339–1349. doi: 10.1109/WACV56688.2023.00139.
|
[221] |
XIAO Han, RASUL K, and VOLLGRAF R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms[J]. arXiv: 1708.07747, 2017. doi: 10.48550/arXiv.1708.07747.
|
[222] |
NETZER Y, WANG Tao, COATES A, et al. Reading digits in natural images with unsupervised feature learning[C]. Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 2011.
|
[223] |
BULATOV Y. Notmnist dataset[EB/OL]. http://yaroslavvb.blogspot.it/2011/09/notmnist-dataset.html, 2011.
|
[224] |
YANG Yuwei, HAYAT M, JIN Zhao, et al. Geometry and uncertainty-aware 3D point cloud class-incremental semantic segmentation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 21759–21768. doi: 10.1109/CVPR52729.2023.02084.
|
[225] |
CAMUFFO E and MILANI S. Continual learning for LiDAR semantic segmentation: Class-incremental and coarse-to-fine strategies on sparse data[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 2447–2456. doi: 10.1109/CVPRW59228.2023.00243.
|
[226] |
CASTAGNOLO G, SPAMPINATO C, RUNDO F, et al. A baseline on continual learning methods for video action recognition[C]. IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 2023: 3240–3244. doi: 10.1109/ICIP49359.2023.10222140.
|
[227] |
NAQUSHBANDI F S and JOHN A. Sequence of actions recognition using continual learning[C]. 2022 Second International Conference on Artificial Intelligence and Smart Energy, Coimbatore, India, 2022: 858–863. doi: 10.1109/ICAIS53314.2022.9742866.
|
[228] |
LI Dingcheng, CHEN Zheng, CHO E, et al. Overcoming catastrophic forgetting during domain adaptation of Seq2seq language generation[C]. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, USA, 2022: 5441–5454. doi: 10.18653/v1/2022.naacl-main.398.
|
[229] |
MONAIKUL N, CASTELLUCCI G, FILICE S, et al. Continual learning for named entity recognition[C]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 13570–13577. doi: 10.1609/aaai.v35i15.17600.
|
[230] |
LIU Qingbin, YU Xiaoyan, HE Shizhu, et al. Lifelong intent detection via multi-strategy rebalancing[J]. arXiv: 2108.04445, 2021. doi: 10.48550/arXiv.2108.04445.
|
[231] |
MARACANI A, MICHIELI U, TOLDO M, et al. RECALL: Replay-based continual learning in semantic segmentation[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 7006–7015. doi: 10.1109/ICCV48922.2021.00694.
|
[232] |
WANG Rui, YU Tong, ZHAO Handong, et al. Few-shot class-incremental learning for named entity recognition[C]. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 2022: 571–582. doi: 10.18653/v1/2022.acl-long.43.
|
[233] |
GENG Binzong, YUAN Fajie, XU Qiancheng, et al. Continual learning for task-oriented dialogue system with iterative network pruning, expanding and masking[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 517–523. doi: 10.18653/v1/2021.acl-short.66.
|
[234] |
CHEN Wuyang, ZHOU Yanqi, DU Nan, et al. Lifelong language PRETRAINING with distribution-specialized experts[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 5383–5395.
|
[235] |
LUO Yun, YANG Zhen, MENG Fandong, et al. An empirical study of catastrophic forgetting in large language models during continual fine-tuning[J]. arXiv: 2308.08747, 2023. doi: 10.48550/arXiv.2308.08747.
|
[236] |
QI Xiangyu, ZENG Yi, XIE Tinghao, et al. Fine-tuning aligned language models compromises safety, even when users do not intend to![C]. Twelfth International Conference on Learning Representations, Vienna, Austria, 2024.
|
[237] |
SMITH J S, HSU Y C, ZHANG Lingyu, et al. Continual diffusion: Continual customization of text-to-image diffusion with C-LoRA[J]. arXiv: 2304.06027, 2023. doi: 10.48550/arXiv.2304.06027.
|
[238] |
YANG Xin, YU Hao, GAO Xin, et al. Federated continual learning via knowledge fusion: A survey[J]. arXiv: 2312.16475, 2023. doi: 10.48550/arXiv.2312.16475.
|
[239] |
LIU Xialei, HU Yusong, CAO Xusheng, et al. Long-tailed class incremental learning[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 495–512. doi: 10.1007/978-3-031-19827-4_29.
|