Advanced Search
Turn off MathJax
Article Contents
XUE Peiyun, DAI Shutao, BAI Jing, GAO Xiang. Emotion Recognition with Speech and Facial Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240087
Citation: XUE Peiyun, DAI Shutao, BAI Jing, GAO Xiang. Emotion Recognition with Speech and Facial Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240087

Emotion Recognition with Speech and Facial Images

doi: 10.11999/JEIT240087
Funds:  Shanxi Youth Fundation (20210302124544), Applied Basic Research Program of Shanxi Province (201901D111094)
  • Received Date: 2024-02-05
  • Rev Recd Date: 2024-11-06
  • Available Online: 2024-11-08
  • In order to improve the accuracy of emotion recognition models and solve the problem of insufficient emotional feature extraction, this paper conducts research on bimodal emotion recognition involving audio and facial imagery. In the audio modality, a feature extraction model of a Multi-branch Convolutional Neural Network (MCNN) incorporating a channel-space attention mechanism is proposed, which extracts emotional features from speech spectrograms across time, space, and local feature dimensions. For the facial image modality, a feature extraction model using a Residual Hybrid Convolutional Neural Network (RHCNN) is introduced, which further establishes a parallel attention mechanism that concentrates on global emotional features to enhance recognition accuracy. The emotional features extracted from audio and facial imagery are then classified through separate classification layers, and a decision fusion technique is utilized to amalgamate the classification results. The experimental results indicate that the proposed bimodal fusion model has achieved recognition accuracies of 97.22%, 94.78%, and 96.96% on the RAVDESS, eNTERFACE’05, and RML datasets, respectively. These accuracies signify improvements over single-modality audio recognition by 11.02%, 4.24%, and 8.83%, and single-modality facial image recognition by 4.60%, 6.74%, and 4.10%, respectively. Moreover, the proposed model outperforms related methodologies applied to these datasets in recent years. This illustrates that the advanced bimodal fusion model can effectively focus on emotional information, thereby enhancing the overall accuracy of emotion recognition.
  • loading
  • [1]
    KUMARAN U, RADHA RAMMOHAN S, NAGARAJAN S M, et al. Fusion of mel and gammatone frequency cepstral coefficients for speech emotion recognition using deep C-RNN[J]. International Journal of Speech Technology, 2021, 24(2): 303–314. doi: 10.1007/s10772-020-09792-x.
    [2]
    韩虎, 范雅婷, 徐学锋. 面向方面情感分析的多通道增强图卷积网络[J]. 电子与信息学报, 2024, 46(3): 1022–1032. doi: 10.11999/JEIT230353.

    HAN Hu, FAN Yating, and XU Xuefeng. Multi-channel enhanced graph convolutional network for aspect-based sentiment analysis[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1022–1032. doi: 10.11999/JEIT230353.
    [3]
    CORNEJO J and PEDRINI H. Bimodal emotion recognition based on audio and facial parts using deep convolutional neural networks[C]. Proceedings of the 18th IEEE International Conference On Machine Learning And Applications, Boca Raton, USA, 2019: 111–117. doi: 10.1109/ICMLA.2019.00026.
    [4]
    O’TOOLE A J, CASTILLO C D, PARDE C J, et al. Face space representations in deep convolutional neural networks[J]. Trends in Cognitive Sciences, 2018, 22(9): 794–809. doi: 10.1016/j.tics.2018.06.006.
    [5]
    CHEN Qiupu and HUANG Guimin. A novel dual attention-based BLSTM with hybrid features in speech emotion recognition[J]. Engineering Applications of Artificial Intelligence, 2021, 102: 104277. doi: 10.1016/J.ENGAPPAI.2021.104277.
    [6]
    PAN Bei, HIROTA K, JIA Zhiyang, et al. A review of multimodal emotion recognition from datasets, preprocessing, features, and fusion methods[J]. Neurocomputing, 2023, 561: 126866. doi: 10.1016/j.neucom.2023.126866.
    [7]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
    [8]
    HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735.
    [9]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [10]
    KIM B K, LEE H, ROH J, et al. Hierarchical committee of deep CNNs with exponentially-weighted decision fusion for static facial expression recognition[C]. Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle Washington, USA, 2015: 427–434. doi: 10.1145/2818346.2830590.
    [11]
    TZIRAKIS P, TRIGEORGIS G, NICOLAOU M A, et al. End-to-end multimodal emotion recognition using deep neural networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(8): 1301–1309. doi: 10.1109/JSTSP.2017.2764438.
    [12]
    SAHOO S and ROUTRAY A. Emotion recognition from audio-visual data using rule based decision level fusion[C]. Proceedings of 2016 IEEE Students’ Technology Symposium, Kharagpur, India, 2016: 7–12. doi: 10.1109/TechSym.2016.7872646.
    [13]
    WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11534–11542. doi: 10.1109/CVPR42600.2020.01155.
    [14]
    CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1251–1258. doi: 10.1109/CVPR.2017.195.
    [15]
    LIVINGSTONE S R and RUSSO F A. The Ryerson audio-visual database of emotional speech and song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English[J]. PLoS One, 2018, 13(5): e0196391. doi: 10.1371/journal.pone.0196391.
    [16]
    WANG Yongjin and GUAN Ling. Recognizing human emotional state from audiovisual signals[J]. IEEE Transactions on Multimedia, 2008, 10(5): 936–946. doi: 10.1109/TMM.2008.927665.
    [17]
    MARTIN O, KOTSIA I, MACQ B, et al. The eNTERFACE’ 05 audio-visual emotion database[C]. Proceedings of the 22nd International Conference on Data Engineering Workshops, Atlanta, USA, 2006: 8. doi: 10.1109/ICDEW.2006.145.
    [18]
    VIJAYAN D M, ARUN A V, GANESHNATH R, et al. Development and analysis of convolutional neural network based accurate speech emotion recognition models[C]. Proceedings of the 19th India Council International Conference, Kochi, India, 2022: 1–6. doi: 10.1109/INDICON56171.2022.10040174.
    [19]
    AGGARWAL A, SRIVASTAVA A, AGARWAL A, et al. Two-way feature extraction for speech emotion recognition using deep learning[J]. Sensors, 2022, 22(6): 2378. doi: 10.3390/s22062378.
    [20]
    ZHANG Limin, LI Yang, ZHANG Yueting, et al. A deep learning method using gender-specific features for emotion recognition[J]. Sensors, 2023, 23(3): 1355. doi: 10.3390/s23031355.
    [21]
    KANANI C S, GILL K S, BEHERA S, et al. Shallow over deep neural networks: A empirical analysis for human emotion classification using audio data[M]. MISRA R, KESSWANI N, RAJARAJAN M, et al. Internet of Things and Connected Technologies. Cham: Springer, 2021: 134–146. doi: 10.1007/978-3-030-76736-5_13.
    [22]
    FALAHZADEH M R, FARSA E Z, HARIMI A, et al. 3D convolutional neural network for speech emotion recognition with its realization on Intel CPU and NVIDIA GPU[J]. IEEE Access, 2022, 10: 112460–112471. doi: 10.1109/ACCESS.2022.3217226.
    [23]
    FALAHZADEH M R, FAROKHI F, HARIMI A, et al. Deep convolutional neural network and gray wolf optimization algorithm for speech emotion recognition[J]. Circuits, Systems, and Signal Processing, 2023, 42(1): 449–492. doi: 10.1007/s00034-022-02130-3.
    [24]
    HARÁR P, BURGET R, and DUTTA M K. Speech emotion recognition with deep learning[C]. Proceedings of the 4th International Conference on Signal Processing and Integrated Networks, Noida, India, 2017: 137–140. doi: 10.1109/SPIN.2017.8049931.
    [25]
    SLIMI A, HAFAR N, ZRIGUI M, et al. Multiple models fusion for multi-label classification in speech emotion recognition systems[J]. Procedia Computer Science, 2022, 207: 2875–2882. doi: 10.1016/j.procs.2022.09.345.
    [26]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [27]
    MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 116–131. doi: 10.1007/978-3-030-01264-9_8.
    [28]
    SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520. doi: 10.1109/CVPR.2018.00474.
    [29]
    MIDDYA A I, NAG B, and ROY S. Deep learning based multimodal emotion recognition using model-level fusion of audio–visual modalities[J]. Knowledge-Based Systems, 2022, 244: 108580. doi: 10.1016/j.knosys.2022.108580.
    [30]
    LUNA-JIMÉNEZ C, KLEINLEIN R, GRIOL D, et al. A proposal for multimodal emotion recognition using aural transformers and action units on RAVDESS dataset[J]. Applied Sciences, 2021, 12(1): 327. doi: 10.3390/app12010327.
    [31]
    BOUALI Y L, AHMED O B, and MAZOUZI S. Cross-modal learning for audio-visual emotion recognition in acted speech[C]. Proceedings of the 6th International Conference on Advanced Technologies for Signal and Image Processing, Sfax, Tunisia, 2022: 1–6. doi: 10.1109/ATSIP55956.2022.9805959.
    [32]
    MOCANU B and TAPU R. Audio-video fusion with double attention for multimodal emotion recognition[C]. Proceedings of the 14th Image, Video, and Multidimensional Signal Processing Workshop, Nafplio, Greece, 2022: 1–5. doi: 10.1109/IVMSP54334.2022.9816349.
    [33]
    WOZNIAK M, SAKOWICZ M, LEDWOSINSKI K, et al. Bimodal emotion recognition based on vocal and facial features[J]. Procedia Computer Science, 2023, 225: 2556–2566. doi: 10.1016/j.procs.2023.10.247.
    [34]
    PAN Bei, HIROTA K, JIA Zhiyang, et al. Multimodal emotion recognition based on feature selection and extreme learning machine in video clips[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(3): 1903–1917. doi: 10.1007/s12652-021-03407-2.
    [35]
    TANG Guichen, XIE Yue, LI Ke, et al. Multimodal emotion recognition from facial expression and speech based on feature fusion[J]. Multimedia Tools and Applications, 2023, 82(11): 16359–16373. doi: 10.1007/s11042-022-14185-0.
    [36]
    CHEN Luefeng, WANG Kuanlin, LI Min, et al. K-means clustering-based kernel canonical correlation analysis for multimodal emotion recognition in human-robot interaction[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 1016–1024. doi: 10.1109/TIE.2022.3150097.
    [37]
    CHEN Guanghui and ZENG Xiaoping. Multi-modal emotion recognition by fusing correlation features of speech-visual[J]. IEEE Signal Processing Letters, 2021, 28: 533–537. doi: 10.1109/LSP.2021.3055755.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views (153) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return