Citation: | YAN Aibin, LI Kun, HUANG Zhengfeng, NI Tianming, XU Hui. Two Highly Reliable Radiation Hardened By Design Static Random Access Memory Cells for Aerospace Applications[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4072-4080. doi: 10.11999/JEIT240082 |
[1] |
YAN Aibin, FAN Zhengzheng, DING Liang, et al. Cost-effective and highly reliable circuit-components design for safety-critical applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 517–529. doi: 10.1109/TAES.2021.3103586.
|
[2] |
VACCA E, AZIMI S, DE SIO C, et al. Soft error reliability prediction of SRAM-based FPGA designs[C]. 2022 22nd European Conference on Radiation and Its Effects on Components and Systems (RADECS), Venice, Italy, 2022: 1–4. doi: 10.1109/RADECS55911.2022.10412546.
|
[3] |
WANG Shida, TANG Min, ZHANG Hongwei, et al. Evaluation of single-event upset in FinFET device[C]. 2023 5th International Conference on Radiation Effects of Electronic Devices (ICREED), Kunming, China, 2023: 1–7. doi: 10.1109/ICREED59404.2023.10390726.
|
[4] |
LIANG Huaguo, XU Xiumin, HUANG Zhengfeng, et al. A methodology for characterization of SET propagation in SRAM-based FPGAs[J]. IEEE Transactions on Nuclear Science, 2016, 63(6): 2985–2992. doi: 10.1109/TNS.2016.2620165.
|
[5] |
BLACK J D, DODD P E, and WARREN K M. Physics of multiple-node charge collection and impacts on single-event characterization and soft error rate prediction[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1836–1851. doi: 10.1109/TNS.2013.2260357.
|
[6] |
YAN Aibin, XU Zhelong, FENG Xiangfeng, et al. Novel quadruple-node-upset-tolerant latch designs with optimized overhead for reliable computing in harsh radiation environments[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 404–413. doi: 10.1109/TETC.2020.3025584.
|
[7] |
HATEFINASAB S, MEDINA-GARCIA A, MORALES D P, et al. Rule-based design for low-cost double-node upset tolerant self-recoverable D-Latch[J]. IEEE Access, 2023, 11: 1732–1741. doi: 10.1109/ACCESS.2022.3233812.
|
[8] |
ZEINZINGER M, LANGER J, EIBENSTEINER F, et al. Comparative analysis of SRAM PUF temperature susceptibility on embedded systems[C]. 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 2023: 1–8. doi: 10.1109/ICECET58911.2023.10389242.
|
[9] |
SUGITANI S, NAKAJIMA R, YOSHIDA K, et al. Radiation hardened flip-flops with low area, delay and power overheads in a 65 nm bulk process[C]. 2023 IEEE International Reliability Physics Symposium (IRPS), Monterey, USA, 2023: 1–5. doi: 10.1109/IRPS48203.2023.10117957.
|
[10] |
YAN Aibin, LING Yafei, CUI Jie, et al. Quadruple cross-coupled dual-interlocked-storage-cells-based multiple-node-upset-tolerant latch designs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(3): 879–890. doi: 10.1109/TCSI.2019.2959007.
|
[11] |
TIAN Yuanxin, ZHANG Yuejun, ZHANG Huihong, et al. An architecture of a single-event tolerant D flip-flop using full-custom design in 28nm process[C]. 2023 IEEE 15th International Conference on ASIC (ASICON), Nanjing, China, 2023: 1–4. doi: 10.1109/ASICON58565.2023.10396468.
|
[12] |
LAI Xiaoling, GUO Yangming, ZHANG Jian, et al. A novel circuit and layout design of SEU tolerant SRAM in a 65nm CMOS process[C]. 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), Ningbo, China, 2023: 522–526. doi: 10.1109/ICIEA58696.2023.10241793.
|
[13] |
JUNG I S, KIM Y B, and LOMBARDI F. A novel sort error hardened 10T SRAM cells for low voltage operation[C]. IEEE 55th International Midwest Symposium on Circuits and Systems, Boise, USA, 2012: 714–717. doi: 10.1109/MWSCAS.2012.6292120.
|
[14] |
LIN Sheng, KIM Y B, and LOMBARDI F. Analysis and design of nanoscale CMOS storage elements for single-event hardening with multiple-node upset[J]. IEEE Transactions on Device and Materials Reliability, 2012, 12(1): 68–77. doi: 10.1109/TDMR.2011.2167233.
|
[15] |
RAJAEI R, ASGARI B, TABANDEH M, et al. Single event multiple upset-tolerant SRAM cell designs for nano-scale CMOS technology[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2017, 25(2): 1035–1047. doi: 10.3906/elk-1502-124.
|
[16] |
GUO Jing, ZHU Lei, SUN Yu, et al. Design of area-efficient and highly reliable RHBD 10T memory cell for aerospace applications[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(5): 991–994. doi: 10.1109/TVLSI.2017.2788439.
|
[17] |
RAJAEI R, ASGARI B, TABANDEH M, et al. Design of robust SRAM cells against single-event multiple effects for nanometer technologies[J]. IEEE Transactions on Device and Materials Reliability, 2015, 15(3): 429–436. doi: 10.1109/TDMR.2015.2456832.
|
[18] |
SHIYANOVSKII Y, RAJENDRAN A, and PAPACHRISTOU C. A low power memory cell design for SEU protection against radiation effects[C]. IEEE NASA/ESA Conference on Adaptive Hardware and Systems, Erlangen, Germany, 2012: 288–295. doi: 10.1109/AHS.2012.6268665.
|
[19] |
QI Chunhua, XIAO Liyi, WANG Tianqi, et al. A highly reliable memory cell design combined with layout-level approach to tolerant single-event upsets[J]. IEEE Transactions on Device and Materials Reliability, 2016, 16(3): 388–395. doi: 10.1109/TDMR.2016.2593590.
|
[20] |
YAN Aibin, ZHOU Jun, HU Yuanjie, et al. Novel quadruple cross-coupled memory cell designs with protection against single event upsets and double-node upsets[J]. IEEE Access, 2019, 7: 176188–176196. doi: 10.1109/access.2019.2958109.
|
[21] |
JIANG Jianwei, XU Yiran, ZHU Wenyi, et al. Quadruple cross-coupled latch-based 10T and 12T SRAM bit-cell designs for highly reliable terrestrial applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(3): 967–977. doi: 10.1109/TCSI.2018.2872507.
|
[22] |
YAN Aibin, WU Zhen, GUO Jing, et al. Novel double-node-upset-tolerant memory cell designs through radiation-hardening-by-design and layout[J]. IEEE Transactions on Reliability, 2019, 68(1): 354–363. doi: 10.1109/TR.2018.2876243.
|
[23] |
DANG L D T, KIM J S, and CHANG I J. We-Quatro: Radiation-hardened SRAM cell with parametric process variation tolerance[J]. IEEE Transactions on Nuclear Science, 2017, 64(9): 2489–2496. doi: 10.1109/TNS.2017.2728180.
|
[24] |
YAN Aibin, CHEN Yan, HU Yuanjie, et al. Novel speed-and-power-optimized SRAM cell designs with enhanced self-recoverability from single- and double-node upsets[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 4684–4695. doi: 10.1109/TCSI.2020.3018328.
|
[25] |
CHOUDHARY V and YADAV D S. Analysis of power, delay and SNM of 6T & 8T SRAM cells[C]. 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2021: 78–82. doi: 10.1109/ICECA52323.2021.9676022.
|
[26] |
PRASAD G, MANDI B C, and ALI M. Design and analysis of 10T-boosted radiation hardened SRAM cell for aerospace applications[C]. 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India, 2019: 304–307. doi: 10.1109/iSES47678.2019.00075.
|
[27] |
PAL S, MOHAPATRA S, KI W H, et al. Soft-error-aware read-decoupled SRAM WITH MULTI-NODE RECOVERY FOR AEROSPACE APPLICATions[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(10): 3336–3340. doi: 10.1109/TCSII.2021.3073947.
|
[28] |
董攀, 范隆, 岳素格, 等. 一种高温单粒子效应测试系统的设计与实现[J]. 微电子学与计算机, 2011, 28(12): 17–20,24. doi: 10.19304/j.cnki.issn1000-7180.2011.12.005.
DONG Pan, FAN Long, YUE Suge, et al. A high temperature single event effects test system design and implementation[J]. Microelectronics & Computer, 2011, 28(12): 17–20,24. doi: 10.19304/j.cnki.issn1000-7180.2011.12.005.
|
[29] |
刘冰燕, 蔡江铮, 黑勇. 应用于超低电压下的SRAM存储单元设计[J]. 微电子学与计算机, 2016, 33(9): 15–18,23. doi: 10.19304/j.cnki.issn1000-7180.2016.09.004.
LIU Bingyan, CAI Jiangzheng, and HEI Yong. A SRAM bitcell design for ultra-low supply application[J]. Microelectronics & Computer, 2016, 33(9): 15–18,23. doi: 10.19304/j.cnki.issn1000-7180.2016.09.004.
|
[30] |
PANDA S, KUMAR N M, and SARKAR C K. Power, delay and noise optimization of a SRAM cell using a different threshold voltages and high performance output noise reduction circuit[C]. 2009 4th International Conference on Computers and Devices for Communication (CODEC), Kolkata, India, 2009: 1–4.
|