Advanced Search
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
GAO Sihua, LIU Baoyu, HUI Kanghua, XU Weifeng, LI Junhui, ZHAO Bingyang. Energy-Efficient UAV Trajectory Planning Algorithm for AoI-Constrained Data Collection[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4024-4034. doi: 10.11999/JEIT240075
Citation: GAO Sihua, LIU Baoyu, HUI Kanghua, XU Weifeng, LI Junhui, ZHAO Bingyang. Energy-Efficient UAV Trajectory Planning Algorithm for AoI-Constrained Data Collection[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4024-4034. doi: 10.11999/JEIT240075

Energy-Efficient UAV Trajectory Planning Algorithm for AoI-Constrained Data Collection

doi: 10.11999/JEIT240075
Funds:  The National Natural Science Foundation of China (62173332), The Fundamental Research Fundation for the Central Universities (3122019118), The Open Fundation of Hebei Key Laboratory of Knowledge Computing for Energy & Power (HBKCEP202202)
  • Received Date: 2024-01-30
  • Rev Recd Date: 2024-09-05
  • Available Online: 2024-09-10
  • Publish Date: 2024-10-30
  • The information freshness is measured by Age of Information (AoI) of each sensor in Wireless Sensor Networks (WSN). The UAV optimizes flight trajectories and accelerates speed to assist WSN data collection, which guarantees that the data offloaded to the base station meets the AoI limitation of each sensor. However, the UAV’s inappropriate flight strategies cause non-essential energy consumption due to excessive flight distance and speed, which may result in the failure of data collection mission. In this paper, firstly a mathematical model is investigated and developed for the UAV energy consumption optimization trajectory planning problem on the basis of AoI-constrained data collection. Then, a novel deep reinforcement learning algorithm, named Cooperation Hybrid Proximal Policy Optimization (CH-PPO) algorithm, is proposed to simultaneously schedule the UAV’s access sequence, hovering position, the flight speed to the sensor nodes or the base station, to minimize the UAV's energy consumption under the constraint of data timeliness for each sensor node. Meanwhile, a loss function that integrates the discrete policy and continuous policy is designed to increase the rationality of hybrid actions and improve the training effectiveness of the proposed algorithm. Numerical results demonstrate that the CH-PPO algorithm outperforms the other three reinforcement learning algorithms in the comparison group in energy consumption of UAV and its influencing factors. Furthermore, the convergence, stability, and robustness of the proposed algorithm is well verified.
  • loading
  • [1]
    AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: A survey[J]. Computer Networks, 2002, 38(4): 393–422. doi: 10.1016/S1389-1286(01)00302-4.
    [2]
    HAYAT S, YANMAZ E, and MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2624–2661. doi: 10.1109/COMST.2016.2560343.
    [3]
    MOTLAGH N H, BAGAA M, and TALEB T. UAV-based IoT platform: A crowd surveillance use case[J]. IEEE Communications Magazine, 2017, 55(2): 128–134. doi: 10.1109/MCOM.2017.1600587CM.
    [4]
    HU Jie, WANG Tuan, YANG Jiacheng, et al. WSN-assisted UAV trajectory adjustment for pesticide drift control[J]. Sensors, 2020, 20(19): 5473. doi: 10.3390/s20195473.
    [5]
    周彬, 郭艳, 李宁, 等. 基于导向强化Q学习的无人机路径规划[J]. 航空学报, 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109.

    ZHOU Bin, GUO Yan, LI Ning, et al. Path planning of UAV using guided enhancement Q-learning algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109.
    [6]
    ZHOU Conghao, WU Wen, HE Hongli, et al. Delay-aware IoT task scheduling in space-air-ground integrated network[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013393.
    [7]
    LIU Dianxiong, XU Yuhua, WANG Jinlong, et al. Opportunistic utilization of dynamic multi-UAV in device-to-device communication networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 1069–1083. doi: 10.1109/TCCN.2020.2991436.
    [8]
    张广驰, 何梓楠, 崔苗. 基于深度强化学习的无人机辅助移动边缘计算系统能耗优化[J]. 电子与信息学报, 2023, 45(5): 1635–1643. doi: 10.11999/JEIT220352.

    ZHANG Guangchi, HE Zinan, and CUI Miao. Energy consumption optimization of unmanned aerial vehicle assisted mobile edge computing systems based on deep reinforcement learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1635–1643. doi: 10.11999/JEIT220352.
    [9]
    LUO Chuanwen, CHEN Wenping, LI Deying, et al. Optimizing flight trajectory of UAV for efficient data collection in wireless sensor networks[J]. Theoretical Computer Science, 2021, 853: 25–42. doi: 10.1016/j.tcs.2020.05.019.
    [10]
    ZHU Yuchao and WANG Shaowei. Efficient aerial data collection with cooperative trajectory planning for large-scale wireless sensor networks[J]. IEEE Transactions on Communications, 2022, 70(1): 433–444. doi: 10.1109/TCOMM.2021.3124950.
    [11]
    ZHAN Cheng and ZENG Yong. Completion time minimization for multi-UAV-enabled data collection[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4859–4872. doi: 10.1109/TWC.2019.2930190.
    [12]
    KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689.
    [13]
    张建行, 康凯, 钱骅, 等. 面向物联网的深度Q网络无人机路径规划[J]. 电子与信息学报, 2022, 44(11): 3850–3857. doi: 10.11999/JEIT210962.

    ZHANG Jianhang, KANG Kai, QIAN Hua, et al. UAV trajectory planning based on deep Q-network for internet of things[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3850–3857. doi: 10.11999/JEIT210962.
    [14]
    LIAO Yuan and FRIDERIKOS V. Energy and age pareto optimal trajectories in UAV-assisted wireless data collection[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 9101–9106. doi: 10.1109/TVT.2022.3175318.
    [15]
    SHERMAN M, SHAO Sihua, SUN Xiang, et al. Optimizing AoI in UAV-RIS-assisted IoT networks: Off policy versus on policy[J]. IEEE Internet of Things Journal, 2023, 10(14): 12401–12415. doi: 10.1109/JIOT.2023.3246925.
    [16]
    SUN Mengying, XU Xiaodong, QIN Xiaoqi, et al. AoI-energy-aware UAV-assisted data collection for IoT networks: A deep reinforcement learning method[J]. IEEE Internet of Things Journal, 2021, 8(24): 17275–17289. doi: 10.1109/JIOT.2021.3078701.
    [17]
    LIU Juan, TONG Peng, WANG Xijun, et al. UAV-aided data collection for information freshness in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2368–2382. doi: 10.1109/TWC.2020.3041750.
    [18]
    DAI Zipeng, LIU C H, YE Yuxiao, et al. AoI-minimal UAV crowdsensing by model-based graph convolutional reinforcement learning[C]. IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, United Kingdom, 2022: 1029–1038. doi: 10.1109/INFOCOM48880.2022.9796732.
    [19]
    LIU Kai and ZHENG Jun. UAV trajectory optimization for time-constrained data collection in UAV-enabled environmental monitoring systems[J]. IEEE Internet of Things Journal, 2022, 9(23): 24300–24314. doi: 10.1109/JIOT.2022.3189214.
    [20]
    SUN Yin, UYSAL-BIYIKOGLU E, YATES R D, et al. Update or wait: How to keep your data fresh[J]. IEEE Transactions on Information Theory, 2017, 63(11): 7492–7508. doi: 10.1109/TIT.2017.2735804.
    [21]
    YU Yu, TANG Jie, HUANG Jiayi, et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm[J]. IEEE Transactions on Communications, 2021, 69(9): 6361–6374. doi: 10.1109/TCOMM.2021.3089476.
    [22]
    ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
    [23]
    FAN Zhou, SU Rui, ZHANG Weinan, et al. Hybrid actor-critic reinforcement learning in parameterized action space[C]. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019.
    [24]
    HA V P, DAO T K, PHAM N Y, et al. A variable-length chromosome genetic algorithm for time-based sensor network schedule optimization[J]. Sensors, 2021, 21(12): 3990. doi: 10.3390/s21123990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views (172) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return