Citation: | GAO Sihua, LIU Baoyu, HUI Kanghua, XU Weifeng, LI Junhui, ZHAO Bingyang. Energy-Efficient UAV Trajectory Planning Algorithm for AoI-Constrained Data Collection[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4024-4034. doi: 10.11999/JEIT240075 |
[1] |
AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: A survey[J]. Computer Networks, 2002, 38(4): 393–422. doi: 10.1016/S1389-1286(01)00302-4.
|
[2] |
HAYAT S, YANMAZ E, and MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2624–2661. doi: 10.1109/COMST.2016.2560343.
|
[3] |
MOTLAGH N H, BAGAA M, and TALEB T. UAV-based IoT platform: A crowd surveillance use case[J]. IEEE Communications Magazine, 2017, 55(2): 128–134. doi: 10.1109/MCOM.2017.1600587CM.
|
[4] |
HU Jie, WANG Tuan, YANG Jiacheng, et al. WSN-assisted UAV trajectory adjustment for pesticide drift control[J]. Sensors, 2020, 20(19): 5473. doi: 10.3390/s20195473.
|
[5] |
周彬, 郭艳, 李宁, 等. 基于导向强化Q学习的无人机路径规划[J]. 航空学报, 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109.
ZHOU Bin, GUO Yan, LI Ning, et al. Path planning of UAV using guided enhancement Q-learning algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109.
|
[6] |
ZHOU Conghao, WU Wen, HE Hongli, et al. Delay-aware IoT task scheduling in space-air-ground integrated network[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013393.
|
[7] |
LIU Dianxiong, XU Yuhua, WANG Jinlong, et al. Opportunistic utilization of dynamic multi-UAV in device-to-device communication networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 1069–1083. doi: 10.1109/TCCN.2020.2991436.
|
[8] |
张广驰, 何梓楠, 崔苗. 基于深度强化学习的无人机辅助移动边缘计算系统能耗优化[J]. 电子与信息学报, 2023, 45(5): 1635–1643. doi: 10.11999/JEIT220352.
ZHANG Guangchi, HE Zinan, and CUI Miao. Energy consumption optimization of unmanned aerial vehicle assisted mobile edge computing systems based on deep reinforcement learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1635–1643. doi: 10.11999/JEIT220352.
|
[9] |
LUO Chuanwen, CHEN Wenping, LI Deying, et al. Optimizing flight trajectory of UAV for efficient data collection in wireless sensor networks[J]. Theoretical Computer Science, 2021, 853: 25–42. doi: 10.1016/j.tcs.2020.05.019.
|
[10] |
ZHU Yuchao and WANG Shaowei. Efficient aerial data collection with cooperative trajectory planning for large-scale wireless sensor networks[J]. IEEE Transactions on Communications, 2022, 70(1): 433–444. doi: 10.1109/TCOMM.2021.3124950.
|
[11] |
ZHAN Cheng and ZENG Yong. Completion time minimization for multi-UAV-enabled data collection[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4859–4872. doi: 10.1109/TWC.2019.2930190.
|
[12] |
KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689.
|
[13] |
张建行, 康凯, 钱骅, 等. 面向物联网的深度Q网络无人机路径规划[J]. 电子与信息学报, 2022, 44(11): 3850–3857. doi: 10.11999/JEIT210962.
ZHANG Jianhang, KANG Kai, QIAN Hua, et al. UAV trajectory planning based on deep Q-network for internet of things[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3850–3857. doi: 10.11999/JEIT210962.
|
[14] |
LIAO Yuan and FRIDERIKOS V. Energy and age pareto optimal trajectories in UAV-assisted wireless data collection[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 9101–9106. doi: 10.1109/TVT.2022.3175318.
|
[15] |
SHERMAN M, SHAO Sihua, SUN Xiang, et al. Optimizing AoI in UAV-RIS-assisted IoT networks: Off policy versus on policy[J]. IEEE Internet of Things Journal, 2023, 10(14): 12401–12415. doi: 10.1109/JIOT.2023.3246925.
|
[16] |
SUN Mengying, XU Xiaodong, QIN Xiaoqi, et al. AoI-energy-aware UAV-assisted data collection for IoT networks: A deep reinforcement learning method[J]. IEEE Internet of Things Journal, 2021, 8(24): 17275–17289. doi: 10.1109/JIOT.2021.3078701.
|
[17] |
LIU Juan, TONG Peng, WANG Xijun, et al. UAV-aided data collection for information freshness in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2368–2382. doi: 10.1109/TWC.2020.3041750.
|
[18] |
DAI Zipeng, LIU C H, YE Yuxiao, et al. AoI-minimal UAV crowdsensing by model-based graph convolutional reinforcement learning[C]. IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London, United Kingdom, 2022: 1029–1038. doi: 10.1109/INFOCOM48880.2022.9796732.
|
[19] |
LIU Kai and ZHENG Jun. UAV trajectory optimization for time-constrained data collection in UAV-enabled environmental monitoring systems[J]. IEEE Internet of Things Journal, 2022, 9(23): 24300–24314. doi: 10.1109/JIOT.2022.3189214.
|
[20] |
SUN Yin, UYSAL-BIYIKOGLU E, YATES R D, et al. Update or wait: How to keep your data fresh[J]. IEEE Transactions on Information Theory, 2017, 63(11): 7492–7508. doi: 10.1109/TIT.2017.2735804.
|
[21] |
YU Yu, TANG Jie, HUANG Jiayi, et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm[J]. IEEE Transactions on Communications, 2021, 69(9): 6361–6374. doi: 10.1109/TCOMM.2021.3089476.
|
[22] |
ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
|
[23] |
FAN Zhou, SU Rui, ZHANG Weinan, et al. Hybrid actor-critic reinforcement learning in parameterized action space[C]. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019.
|
[24] |
HA V P, DAO T K, PHAM N Y, et al. A variable-length chromosome genetic algorithm for time-based sensor network schedule optimization[J]. Sensors, 2021, 21(12): 3990. doi: 10.3390/s21123990.
|