Advanced Search
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
WANG Huanyu, LIN Honglei, OU Gang, TANG Xiaomei. The Spoofing Detection Method of Navigation Terminal Using Partial Authenticated Signals[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4053-4061. doi: 10.11999/JEIT240067
Citation: WANG Huanyu, LIN Honglei, OU Gang, TANG Xiaomei. The Spoofing Detection Method of Navigation Terminal Using Partial Authenticated Signals[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4053-4061. doi: 10.11999/JEIT240067

The Spoofing Detection Method of Navigation Terminal Using Partial Authenticated Signals

doi: 10.11999/JEIT240067
  • Received Date: 2024-01-29
  • Rev Recd Date: 2024-09-05
  • Available Online: 2024-09-09
  • Publish Date: 2024-10-30
  • The navigation signal authentication service is in the initial stage. The coverage multiple numbers of the authentication signal to ground can not meet the requirement of independent positioning and timing. The existing research has paid little attention to the deception detection method based on partially trusted signals at this stage. Aiming at the status quo, according to the principle of spoofing attack, a spoofing detection method is proposed based on the pseudo-distance residual of the authentication signal, and the spoofing detection model is established in this scenario, and the factors that affect the detection performance of the proposed method are analyzed. After simulation, the average deception detection probability of the algorithm can reach 0.96 when the positioning deviation is 100 m, the positioning accuracy is about 10 m, and the number of trusted satellites is 3. In addition, the blind area of the algorithm is analyzed, and it is proved that the algorithm is effective for most of the deception positions.
  • loading
  • [1]
    CARROLL J V, VAN DYKE K, KRAEMER J H, et al. Vulnerability assessment of the U. S. transportation infrastructure that relies on GPS[C]. Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, USA, 2001: 975–981.
    [2]
    WU Zhijun, ZHANG Yun, YANG Yiming, et al. Spoofing and anti-spoofing technologies of global navigation satellite system: A survey[J]. IEEE Access, 2020, 8: 165444–165496. doi: 10.1109/ACCESS.2020.3022294.
    [3]
    YUAN Muzi, TANG Xiaomei, and OU Gang. Authenticating GNSS civilian signals: A survey[J]. Satellite Navigation, 2023, 4(1): 6. doi: 10.1186/s43020-023-00094-6.
    [4]
    NICOLA M, MOTELLA B, PINI M, et al. Galileo OSNMA public observation phase: Signal testing and validation[J]. IEEE Access, 2022, 10: 27960–27969. doi: 10.1109/ACCESS.2022.3157337.
    [5]
    FERNÁNDEZ I, RIJMEN V, ASHUR T, et al. Galileo navigation message authentication specification for signal-in-space testing - v1.0[R]. European Commission, 2016.
    [6]
    ANDERSON J M, CARROLL K L, DEVILBISS N P, et al. Chips-message robust authentication (chimera) for GPS civilian signals[C]. Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, USA, 2017: 2388–2416. doi: 10.33012/2017.15206.
    [7]
    CHAPMAN D C. Chips message robust authentication (chimera) enhancement for the L1C signal: Space segment/user segment interface[R]. IS-AGT-100, 2019.
    [8]
    MANANDHAR D and SHIBASAKI R. Signal authentication for anti-spoofing based on L1S[C]. Proceedings of the ION 2017 Pacific PNT Meeting, Honolulu, USA, 2017: 938–947. doi: 10.33012/2017.15029.
    [9]
    MANANDHAR D and SHIBASAKI R. Authenticating GALILEO open signal using QZSS signal[C]. Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation, Miami, USA, 2018: 3995–4003. doi: 10.33012/2018.15872.
    [10]
    王磊, 李德仁, 陈锐志, 等. 低轨卫星导航增强技术——机遇与挑战[J]. 中国工程科学, 2020, 22(2): 144–152. doi: 10.15302/J-SSCAE-2020.02.018.

    WANG Lei, LI Deren, CHEN Ruizhi, et al. Low earth orbiter (LEO) navigation augmentation: Opportunities and challenges[J]. Strategic Study of CAE, 2020, 22(2): 144–152. doi: 10.15302/J-SSCAE-2020.02.018.
    [11]
    SUN Tianyu, HU Min, and YUN Chaoming. Low-orbit large-scale communication satellite constellation configuration performance assessment[J]. International Journal of Aerospace Engineering, 2022, 2022: 4918912. doi: 10.1155/2022/4918912.
    [12]
    S·柳辛. 使用PVT解估算来检测和消除GNSS欺骗信号[P]. 中国, 110114695A, 2019.

    S·LIUXIN. Detection and elimination of GNSS spoofing signals with PVT solution estimation[P]. CN, 110114695A, 2019.
    [13]
    张超, 吕志伟, 张伦东, 等. 欺骗干扰对GNSS/INS系统定位性能的影响[J]. 导航定位学报, 2022, 10(4): 20–28. doi: 10.3969/j.issn.2095-4999.2022.04.003.

    ZHANG Cao, LYU Zhiwei, ZHANG Lundong, et al. Influence analysis of spoofing interference on positioning performance of GNSS/INS system[J]. Journal of Navigation and Positioning, 2022, 10(4): 20–28. doi: 10.3969/j.issn.2095-4999.2022.04.003.
    [14]
    谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009.

    XIE G. Principles of GPS and Receiver Design[M]. Beijing: Publishing House of Electronics Industry, 2009.
    [15]
    PARKINSON B W and AXELRAD P. Autonomous GPS integrity monitoring using the pseudorange residual[J]. Navigation, 1988, 35(2): 255–274. doi: 10.1002/j.2161-4296.1988.tb00955.x.
    [16]
    FU Dong, PENG Jing, GONG Hang, et al. Impact analysis of meaconing attack on timing receiver[M]. YANG Changfeng and XIE Jun. China Satellite Navigation Conference (CSNC 2021) Proceedings. Singapore: Springer, 2021: 423–434. doi: 10.1007/978-981-16-3146-7_39.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (106) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return