Citation: | HE Weizhen, TAN Jinglei, ZHANG Shuai, CHENG Guozhen, ZHANG Fan, GUO Yunfei. Multi-Stage Game-based Topology Deception Method Using Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4422-4431. doi: 10.11999/JEIT240029 |
[1] |
DUAN Qiang. Intelligent and autonomous management in cloud-native future networks—A survey on related standards from an architectural perspective[J]. Future Internet, 2021, 13(2): 42. doi: 10.3390/fi13020042.
|
[2] |
ARMITAGE J. Cloud Native Security Cookbook[M]. O’Reilly Media, Inc. , 2022: 15–20.
|
[3] |
TÄRNEBERG W, SKARIN P, GEHRMANN C, et al. Prototyping intrusion detection in an industrial cloud-native digital twin[C]. 2021 22nd IEEE International Conference on Industrial Technology, Valencia, Spain, 2021: 749–755. doi: 10.1109/ICIT46573.2021.9453553.
|
[4] |
STOJANOVIĆ B, HOFER-SCHMITZ K, and KLEB U. APT datasets and attack modeling for automated detection methods: A review[J]. Computers & Security, 2020, 92: 101734. doi: 10.1016/j.cose.2020.101734.
|
[5] |
TRASSARE S T, BEVERLY R, and ALDERSON D. A technique for network topology deception[C]. 2013 IEEE Military Communications Conference, San Diego, USA, 2013: 1795–1800. doi: 10.1109/MILCOM.2013.303.
|
[6] |
MEIER R, TSANKOV P, LENDERS V, et al. NetHide: Secure and practical network topology obfuscation[C]. 27th USENIX Conference on Security Symposium, Baltimore, USA, 2018: 693–709.
|
[7] |
SAYED A, ANWAR A H, KIEKINTVELD C, et al. Honeypot allocation for cyber deception in dynamic tactical networks: A game theoretic approach[C]. 14th International Conference on Decision and Game Theory for Security, Avignon, France, 2023: 195–214. doi: 10.1007/978-3-031-50670-3_10.
|
[8] |
HORÁK K, ZHU Quanyan, and BOŠANSKÝ B. Manipulating adversary’s belief: A dynamic game approach to deception by design for proactive network security[C]. 8th International Conference on Decision and Game Theory for Security, Vienna, Austria, 2017: 273–294. doi: 10.1007/978-3-319-68711-7_15.
|
[9] |
MILANI S, SHEN Weiran, CHAN K S, et al. Harnessing the power of deception in attack graph-based security games[C]. 11th International Conference on Decision and Game Theory for Security, College Park, USA, 2020: 147–167. doi: 10.1007/978-3-030-64793-3_8.
|
[10] |
WANG Shuo, PEI Qingqi, WANG Jianhua, et al. An intelligent deployment policy for deception resources based on reinforcement learning[J]. IEEE Access, 2020, 8: 35792–35804. doi: 10.1109/ACCESS.2020.2974786.
|
[11] |
LI Huanruo, GUO Yunfei, HUO Shumin, et al. Defensive deception framework against reconnaissance attacks in the cloud with deep reinforcement learning[J]. Science China Information Sciences, 2022, 65(7): 170305. doi: 10.1007/s11432-021-3462-4.
|
[12] |
KANG M S, GLIGOR V D, and SEKAR V. SPIFFY: Inducing cost-detectability tradeoffs for persistent link-flooding attacks[C]. 23rd Annual Network and Distributed System Security Symposium, San Diego, USA, 2016: 53–55.
|
[13] |
KIM J, NAM J, LEE S, et al. BottleNet: Hiding network bottlenecks using SDN-based topology deception[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3138–3153. doi: 10.1109/TIFS.2021.3075845.
|
[14] |
VAN DIJK M, JUELS A, OPREA A, et al. FlipIt: The game of “stealthy takeover”[J]. Journal of Cryptology, 2013, 26(4): 655–713. doi: 10.1007/s00145-012-9134-5.
|
[15] |
DORASZELSKI U and ESCOBAR J F. A theory of regular Markov perfect equilibria in dynamic stochastic games: Genericity, stability, and purification[J]. Theoretical Economics, 2010, 5(3): 369–402. doi: 10.3982/TE632.
|
[16] |
NILIM A and GHAOUI L E. Robust control of Markov decision processes with uncertain transition matrices[J]. Operations Research, 2005, 53(5): 780–798. doi: 10.1287/opre.1050.0216.
|
[17] |
张勇, 谭小彬, 崔孝林, 等. 基于Markov博弈模型的网络安全态势感知方法[J]. 软件学报, 2011, 22(3): 495–508. doi: 10.3724/SP.J.1001.2011.03751.
ZHANG Yong, TAN Xiaobin, CUI Xiaolin, et al. Network security situation awareness approach based on Markov game model[J]. Journal of Software, 2011, 22(3): 495–508. doi: 10.3724/SP.J.1001.2011.03751.
|
[18] |
China national vulnerability database of information security[DB/OL]. https://www.cnnvd.org.cn/home/aboutUs, 2015.
|