Advanced Search
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
ZHAO Yan, ZHAO Lingjun, ZHANG Siqian, JI Kefeng, KUANG Gangyao. Few-Shot Class-Incremental SAR Image Target Recognition using Self-supervised Decoupled Dynamic Classifier[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3936-3948. doi: 10.11999/JEIT231470
Citation: ZHAO Yan, ZHAO Lingjun, ZHANG Siqian, JI Kefeng, KUANG Gangyao. Few-Shot Class-Incremental SAR Image Target Recognition using Self-supervised Decoupled Dynamic Classifier[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3936-3948. doi: 10.11999/JEIT231470

Few-Shot Class-Incremental SAR Image Target Recognition using Self-supervised Decoupled Dynamic Classifier

doi: 10.11999/JEIT231470
  • Received Date: 2024-01-10
  • Rev Recd Date: 2024-06-17
  • Available Online: 2024-06-24
  • Publish Date: 2024-10-30
  • To power Deep-Learning (DL) based Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) systems with the capability of learning new-class targets incrementally and rapidly in openly dynamic non-cooperative situations, the problem of Few-Shot Class-Incremental Learning (FSCIL) of SAR ATR is researched and a Self-supervised Decoupled Dynamic Classifier (SDDC) is proposed. Considering solving both the intrinsic Catastrophic forgetting and Overfitting dilemma of the FSCIL and domain challenges of SAR ATR, a self-supervised learning task powered by Scattering Component Mixup and Rotation (SCMR) is designed to improve the model’s generalizability and stability for target representation, leveraged by the partiality and azimuth dependence of target information in SAR imagery. Meanwhile, a Class-Imprinting Cross-Entropy (CI-CE) and a Parameter Decoupled Learning (PDL) strategy are designed to fine-tune networks dynamically to identify old and new targets evenly. Experiments on various FSCIL scenarios constructed by the MSTAR and the SAR-AIRcraft-1.0 datasets covering diverse target categories, observing environments, and imaging payloads, verify the method’s adaptability to openly dynamic world.
  • loading
  • [1]
    张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报: 信息科学版, 2018, 43(12): 2039–2049. doi: 10.13203/j.whugis20180181.

    ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early detection of landslide hazards in mountainous areas of West China using time series SAR interferometry-A case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039–2049. doi: 10.13203/j.whugis20180181.
    [2]
    李永祯, 黄大通, 邢世其, 等. 合成孔径雷达干扰技术研究综述[J]. 雷达学报, 2020, 9(5): 753–764. doi: 10.12000/JR20087.

    LI Yongzhen, HUANG Datong, XING Shiqi, et al. A review of synthetic aperture radar jamming technique[J]. Journal of Radars, 2020, 9(5): 753–764. doi: 10.12000/JR20087.
    [3]
    傅兴玉, 尤红建, 付琨. 基于邻域均方连续差分的SAR图像边缘提取算法[J]. 电子与信息学报, 2012, 34(5): 1030–1037. doi: 10.3724/SP.J.1146.2011.00920.

    FU Xingyu, YOU Hongjian, and FU Kun. An approach to extract edge in SAR image based on square successive difference of neighborhood averages[J]. Journal of Electronics & Information Technology, 2012, 34(5): 1030–1037. doi: 10.3724/SP.J.1146.2011.00920.
    [4]
    罗汝, 赵凌君, 何奇山, 等. SAR图像飞机目标智能检测识别技术研究进展与展望[J]. 雷达学报, 2024, 13(2): 307–330. doi: 10.12000/JR23056.

    LUO Ru, ZHAO Lingjun, HE Qishan, et al. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects[J]. Journal of Radars, 2024, 13(2): 307–330. doi: 10.12000/JR23056.
    [5]
    周大蔚, 汪福运, 叶翰嘉, 等. 基于深度学习的类别增量学习算法综述[J]. 计算机学报, 2023, 46(8): 1577–1605. doi: 10.11897/SP.J.1016.2023.01577.

    ZHOU Dawei, WANG Fuyun, YE Hanjia, et al. Deep learning for class-incremental learning: A survey[J]. Chinese Journal of Computers, 2023, 46(8): 1577–1605. doi: 10.11897/SP.J.1016.2023.01577.
    [6]
    丁柏圆, 文贡坚, 余连生, 等. 属性散射中心匹配及其在SAR目标识别中的应用[J]. 雷达学报, 2017, 6(2): 157–166. doi: 10.12000/JR16104.

    DING Baiyuan, WEN Gongjian, YU Liansheng, et al. Matching of attributed scattering center and its application to synthetic aperture radar automatic target recognition[J]. Journal of Radars, 2017, 6(2): 157–166. doi: 10.12000/JR16104.
    [7]
    HUMMEL R. Model-based ATR using synthetic aperture radar[C]. The IEEE 2000 International Radar Conference, Alexandria, USA, 2000: 856–861. doi: 10.1109/RADAR.2000.851947.
    [8]
    CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720.
    [9]
    REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental classifier and representation learning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5533–5542. doi: 10.1109/CVPR.2017.587.
    [10]
    HOU Saihui, PAN Xinyu, LOY C C, et al. Learning a unified classifier incrementally via rebalancing[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 831–839. doi: 10.1109/CVPR.2019.00092.
    [11]
    TAO Xiaoyu, HONG Xiaopeng, CHANG Xinyuan, et al. Few-shot class-incremental learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12180–12189. doi: 10.1109/cvpr42600.2020.01220.
    [12]
    ZHANG Chi, SONG Nan, LIN Guosheng, et al. Few-shot incremental learning with continually evolved classifiers[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 12450–12459. doi: 10.1109/CVPR46437.2021.01227.
    [13]
    PENG Can, ZHAO Kun, WANG Tianren, et al. Few-shot class-incremental learning from an open-set perspective[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 382–397. doi: 10.1007/978-3-031-19806-9_22.
    [14]
    SONG Zeyin, ZHAO Yifan, SHI Yujun, et al. Learning with fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 24183–24192. doi: 10.1109/CVPR52729.2023.02316.
    [15]
    WANG Li, YANG Xinyao, TAN Haoyue, et al. Few-shot class-incremental SAR target recognition based on hierarchical embedding and incremental evolutionary network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204111. doi: 10.1109/TGRS.2023.3248040.
    [16]
    ZHAO Yan, ZHAO Lingjun, DING Ding, et al. Few-shot class-incremental SAR target recognition via cosine prototype learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5212718. doi: 10.1109/TGRS.2023.3298016.
    [17]
    NOVAK L M, OWIRKA G J, BROWER W S, et al. The automatic target-recognition system in SAIP[J]. The Lincoln Laboratory Journal, 1997, 10(2): 187–202.
    [18]
    王智睿, 康玉卓, 曾璇, 等. SAR-AIRcraft-1.0: 高分辨率SAR飞机检测识别数据集[J]. 雷达学报, 2023, 12(4): 906–922. doi: 10.12000/JR23043.

    WANG Zhirui, KANG Yuzhuo, ZENG Xuan, et al. SAR-AIRcraft-1.0: High-resolution SAR aircraft detection and recognition dataset[J]. Journal of Radars, 2023, 12(4): 906–922. doi: 10.12000/JR23043.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article Metrics

    Article views (238) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return