Citation: | DANG Sihang, LI Xiaozhe, XIA Zhaoqiang, JIANG Xiaoyue, GUI Shuliang, FENG Xiaoyi. Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3908-3917. doi: 10.11999/JEIT231426 |
[1] |
ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514. doi: 10.1016/j.dsp.2022.103514.
|
[2] |
ZOU Zhengxia, CHEN Keyan, SHI Zhenwei, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257–276. doi: 10.1109/JPROC.2023.3238524.
|
[3] |
吕进东, 王彤, 唐晓斌. 基于图注意力网络的半监督SAR舰船目标检测[J]. 电子与信息学报, 2023, 45(5): 1541–1549. doi: 10.11999/JEIT220139.
LÜ Jindong, WANG Tong, and TANG Xiaobin. Semi-supervised SAR ship target detection with graph attention network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1541–1549. doi: 10.11999/JEIT220139.
|
[4] |
王玺坤, 姜宏旭, 林珂玉. 基于改进型YOLO算法的遥感图像舰船检测[J]. 北京航空航天大学学报, 2020, 46(6): 1184–1191. doi: 10.13700/j.bh.1001-5965.2019.0394.
WANG Xikun, JIANG Hongxu, and LIN Keyu. Remote sensing image ship detection based on modified YOLO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1184–1191. doi: 10.13700/j.bh.1001-5965.2019.0394.
|
[5] |
AI Jiaqiu, TIAN Ruitian, LUO Qiwu, et al. Multi-scale rotation-invariant Haar-like feature integrated CNN-based ship detection algorithm of multiple-target environment in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10070–10087. doi: 10.1109/TGRS.2019.2931308.
|
[6] |
黄玉玲, 陶昕辰, 朱涛, 等. 残差对抗目标检测算法的遥感图像检测[J]. 电光与控制, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.
HUANG Yuling, TAO Xinchen, ZHU Tao, et al. A remote sensing image detection method based on residuals adversarial object detection algorithm[J]. Electronics Optics & Control, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.
|
[7] |
马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.
MA Liang, GOU Yutao, LEI Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electronic Engineering, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.
|
[8] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
|
[10] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767, 2018.
|
[11] |
邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.
SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.
|
[12] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
|
[13] |
GENG Chuanxing, HUANG Shengjun, and CHEN Songcan. Recent advances in open set recognition: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3614–3631. doi: 10.1109/TPAMI.2020.2981604.
|
[14] |
DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Open set incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4445–4456. doi: 10.1109/TGRS.2019.2891266.
|
[15] |
DANG Sihang, XIA Zhaoqiang, JIANG Xiaoyue, et al. Inclusive consistency-based quantitative decision-making framework for incremental automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5215614. doi: 10.1109/TGRS.2023.3312330.
|
[16] |
JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5826–5836. doi: 10.1109/CVPR46437.2021.00577.
|
[17] |
GUPTA A, NARAYAN S, JOSEPH KJ, et al. OW-DETR: Open-world detection transformer[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9225–9234. doi: 10.1109/CVPR52688.2022.00902.
|
[18] |
MA Shuailei, WANG Yuefeng, WEI Ying, et al. CAT: LoCalization and identification cascade detection transformer for open-world object detection[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 19681–19690. doi: 10.1109/CVPR52729.2023.01885.
|
[19] |
UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154–171. doi: 10.1007/s11263-013-0620-5.
|
[20] |
ZOHAR O, WANG K C, and YEUNG S. PROB: Probabilistic objectness for open world object detection[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 11444–11453. doi: 10.1109/CVPR52729.2023.01101.
|
[21] |
CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735–3756. doi: 10.1109/JSTARS.2020.3005403.
|
[22] |
ZITNICK C L and DOLLÁR P. Edge boxes: Locating object proposals from edges[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 391–405. doi: 10.1007/978-3-319-10602-1_26.
|
[23] |
禹文奇, 程塨, 王美君, 等. MAR20: 遥感图像军用飞机目标识别数据集[J]. 遥感学报, 2023, 27(12): 2688–2696. doi: 10.11834/jrs.20222139.
YU Wenqi, CHENG Gong, WANG Meijun, et al. MAR20: A benchmark for military aircraft recognition in remote sensing images[J]. National Remote Sensing Bulletin, 2023, 27(12): 2688–2696. doi: 10.11834/jrs.20222139.
|
[24] |
ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. 9th International Conference on Learning Representations, 2021.
|