Advanced Search
Turn off MathJax
Article Contents
DANG Sihang, LI Xiaozhe, XIA Zhaoqiang, JIANG Xiaoyue, GUI Shuliang, FENG Xiaoyi. Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231426
Citation: DANG Sihang, LI Xiaozhe, XIA Zhaoqiang, JIANG Xiaoyue, GUI Shuliang, FENG Xiaoyi. Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231426

Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening

doi: 10.11999/JEIT231426
Funds:  The National Natural Science Foundation of China(62201461, 62301101), The Shanghai Sailing Program under Grant 22YF1452100, The QINCHUANGYUAN Program (QCYRCXM-2022-325), The Key Research and Development Program of Shaanxi (2023-ZDLGY-16, 2023-ZDLGY-44, 2023-ZDLGY-12, 2021-ZDLGY15-01, 2021-ZDLGY09-04, 2021GY-004, 2022-ZDLGY06-07), Chongqing Doctoral Direct Train Research Project (sl202100000315)
  • Received Date: 2023-12-02
  • Rev Recd Date: 2024-07-04
  • Available Online: 2024-07-25
  • In open, dynamic environments where the range of object categories continually expands, the challenge of remote sensing object detection is to detect a known set of object categories while simultaneously identifying unknown objects. To this end, a remote sensing open-set object detection network based on adaptive pre-screening is proposed. Firstly, an adaptive pre-screening module is proposed for object region proposals. Based on the coordinates of the selected region proposals, queries with rich semantic information and spatial features are generated and passed to the decoder. Subsequently, a pseudo-label selection method is devised based on object edge information, and loss functions are constructed with the aim of open set classification to enhance the network’s ability to learn knowledge of unknown classes. Finally, the Military Aircraft Recognition (MAR20) dataset is used to simulate various dynamic environments. Extensive comparative experiments and ablation experiments show that the proposed method can achieve reliable detection of known and unknown objects.
  • loading
  • [1]
    ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514. doi: 10.1016/j.dsp.2022.103514.
    [2]
    ZOU Zhengxia, CHEN Keyan, SHI Zhenwei, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257–276. doi: 10.1109/JPROC.2023.3238524.
    [3]
    吕进东, 王彤, 唐晓斌. 基于图注意力网络的半监督SAR舰船目标检测[J]. 电子与信息学报, 2023, 45(5): 1541–1549. doi: 10.11999/JEIT220139.

    LÜ Jindong, WANG Tong, and TANG Xiaobin. Semi-supervised SAR ship target detection with graph attention network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1541–1549. doi: 10.11999/JEIT220139.
    [4]
    王玺坤, 姜宏旭, 林珂玉. 基于改进型YOLO算法的遥感图像舰船检测[J]. 北京航空航天大学学报, 2020, 46(6): 1184–1191. doi: 10.13700/j.bh.1001-5965.2019.0394.

    WANG Xikun, JIANG Hongxu, and LIN Keyu. Remote sensing image ship detection based on modified YOLO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1184–1191. doi: 10.13700/j.bh.1001-5965.2019.0394.
    [5]
    AI Jiaqiu, TIAN Ruitian, LUO Qiwu, et al. Multi-scale rotation-invariant Haar-like feature integrated CNN-based ship detection algorithm of multiple-target environment in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10070–10087. doi: 10.1109/TGRS.2019.2931308.
    [6]
    黄玉玲, 陶昕辰, 朱涛, 等. 残差对抗目标检测算法的遥感图像检测[J]. 电光与控制, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.

    HUANG Yuling, TAO Xinchen, ZHU Tao, et al. A remote sensing image detection method based on residuals adversarial object detection algorithm[J]. Electronics Optics & Control, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.
    [7]
    马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.

    MA Liang, GOU Yutao, LEI Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electronic Engineering, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.
    [8]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [9]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [10]
    REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767, 2018.
    [11]
    邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.

    SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.
    [12]
    CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [13]
    GENG Chuanxing, HUANG Shengjun, and CHEN Songcan. Recent advances in open set recognition: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3614–3631. doi: 10.1109/TPAMI.2020.2981604.
    [14]
    DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Open set incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4445–4456. doi: 10.1109/TGRS.2019.2891266.
    [15]
    DANG Sihang, XIA Zhaoqiang, JIANG Xiaoyue, et al. Inclusive consistency-based quantitative decision-making framework for incremental automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5215614. doi: 10.1109/TGRS.2023.3312330.
    [16]
    JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5826–5836. doi: 10.1109/CVPR46437.2021.00577.
    [17]
    GUPTA A, NARAYAN S, JOSEPH KJ, et al. OW-DETR: Open-world detection transformer[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9225–9234. doi: 10.1109/CVPR52688.2022.00902.
    [18]
    MA Shuailei, WANG Yuefeng, WEI Ying, et al. CAT: LoCalization and identification cascade detection transformer for open-world object detection[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 19681–19690. doi: 10.1109/CVPR52729.2023.01885.
    [19]
    UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154–171. doi: 10.1007/s11263-013-0620-5.
    [20]
    ZOHAR O, WANG K C, and YEUNG S. PROB: Probabilistic objectness for open world object detection[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 11444–11453. doi: 10.1109/CVPR52729.2023.01101.
    [21]
    CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735–3756. doi: 10.1109/JSTARS.2020.3005403.
    [22]
    ZITNICK C L and DOLLÁR P. Edge boxes: Locating object proposals from edges[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 391–405. doi: 10.1007/978-3-319-10602-1_26.
    [23]
    禹文奇, 程塨, 王美君, 等. MAR20: 遥感图像军用飞机目标识别数据集[J]. 遥感学报, 2023, 27(12): 2688–2696. doi: 10.11834/jrs.20222139.

    YU Wenqi, CHENG Gong, WANG Meijun, et al. MAR20: A benchmark for military aircraft recognition in remote sensing images[J]. National Remote Sensing Bulletin, 2023, 27(12): 2688–2696. doi: 10.11834/jrs.20222139.
    [24]
    ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. 9th International Conference on Learning Representations, 2021. .
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (16) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return