Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
ZHU Zhenfang, LI Jiaxin, XU Fuyong, LIU Peiyu, ZHANG Guangyuan. Empathetic Dialogue Generation via Sentiment and Support Strategy[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3382-3389. doi: 10.11999/JEIT231417
Citation: ZHU Zhenfang, LI Jiaxin, XU Fuyong, LIU Peiyu, ZHANG Guangyuan. Empathetic Dialogue Generation via Sentiment and Support Strategy[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3382-3389. doi: 10.11999/JEIT231417

Empathetic Dialogue Generation via Sentiment and Support Strategy

doi: 10.11999/JEIT231417 cstr: 32379.14.JEIT231417
Funds:  The National Social Science Foundation (19BYY076)
  • Received Date: 2023-12-25
  • Rev Recd Date: 2024-04-23
  • Available Online: 2024-07-25
  • Publish Date: 2024-08-10
  • Empathic dialogue aims to provide mental health support for anxious users, thus chatbots with empathic capabilities is a noteworthy issue. The existing methods can only identify users’ sentiment states, but can not effectively generate empathetic responses according to users’ different sentiment states and let alone effectively relieve users’ bad emotions. Therefore, in the research of building sentiment support chatbots, how to dynamically capture users’ fine-grained sentiment features and provide corresponding psychological support according to sentiment features needs to be further explored. This paper proposes an empathic dialogue generation method based on the fusion of emotion and strategy. Firstly, the sentiment classification network is used to dynamically perceive the user’s sentiment state. Then the support strategy is used to accurately model the strategy matching network which is introduced according to the context of the conversation to generate the conversation. Finally, by comparing the experimental results of the proposed method and the current advanced methods on the corresponding datasets, the effectiveness of the proposed method and the importance of sentiment support are verified.
  • loading
  • [1]
    黄宏程, 苏美丹, 寇兰, 等. 基于主从博弈的多方人机交互对话心理模型[J]. 电子与信息学报, 2023, 45(5): 1758–1765. doi: 10.11999/JEIT220441.

    HUANG Hongcheng, SU Meidan, KOU Lan, et al. Multi-party human-computer interaction dialogue psychology model based on stackelberg game[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1758–1765. doi: 10.11999/JEIT220441.
    [2]
    GHOSH S, CHOLLET M, LAKSANA E, et al. Affect-LM: A neural language model for customizable affective text generation[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 634–642. doi: 10.18653/v1/P17-1059.
    [3]
    ZHOU Hao, HUANG Minlie, ZHANG Tianyang, et al. Emotional chatting machine: Emotional conversation generation with internal and external memory[C]. Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 730–739. doi: 10.1609/AAAI.V32I1.11325.
    [4]
    WEI Wei, LIU Jiayi, MAO Xianling, et al. Emotion-aware chat machine: Automatic emotional response generation for human-like emotional interaction[C]. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing, China, 2019: 1401–1410. doi: 10.1145/3357384.3357937.
    [5]
    LIU Siyang, ZHENG Chujie, DEMASI O, et al. Towards emotional support dialog systems[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 3469–3483. doi: 10.18653/V1/2021.ACL-LONG.269.
    [6]
    车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战、机遇与发展[J]. 中国科学: 信息科学, 2023, 53(9): 1645–1687. doi: 10.1360/SSI-2023-0113.

    CHE Wanxiang, DOU Zhicheng, FENG Yansong, et al. Towards a comprehensive understanding of the impact of large language models on natural language processing: Challenges, opportunities and future directions[J]. SCIENTIA SINICA Informationis, 2023, 53(9): 1645–1687. doi: 10.1360/SSI-2023-0113.
    [7]
    RASHKIN H, SMITH E M, LI M, et al. Towards empathetic open-domain conversation models: A new benchmark and dataset[C]. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 5370–5381. doi: 10.18653/V1/P19-1534.
    [8]
    LIN Zhaojiang, MADOTTO A, SHIN J, et al. MoEL: Mixture of empathetic listeners[C]. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 121–132. doi: 10.18653/V1/D19-1012.
    [9]
    MAJUMDER N, HONG Pengfei, PENG Shanshan, et al. MIME: MIMicking emotions for empathetic response generation[C]. Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 8968–8979. doi: 10.18653/V1/2020.EMNLP-MAIN.721.
    [10]
    HESS U and FISCHER A. Emotional mimicry: Why and when we mimic emotions[J]. Social and Personality Psychology Compass, 2014, 8(2): 45–57. doi: 10.1111/spc3.12083.
    [11]
    RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9.
    [12]
    ZANDIE R and MAHOOR M H. Emptransfo: A multi-head transformer architecture for creating empathetic dialog systems[C]. Proceedings of the Thirty-Third International Florida Artificial Intelligence Research Society Conference, North Miami Beach, USA, 2020: 276–281.
    [13]
    RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[J]. 2018.
    [14]
    YU Dian and YU Zhou. MIDAS: A dialog act annotation scheme for open domain HumanMachine spoken conversations[C]. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, 2021: 1103–1120. doi: 10.18653/V1/2021.EACL-MAIN.94.
    [15]
    QIAN Hongjin, DOU Zhicheng, ZHU Yutao, et al. Learning implicit user profile for personalized retrieval-based chatbot[C]. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Australia, 2021: 1467–1477. doi: 10.1145/3459637.3482269.
    [16]
    ZHANG Yizhe, SUN Siqi, GALLEY M, et al. DIALOGPT: Large-Scale generative pre-training for conversational response generation[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2020: 270–278. doi: 10.18653/V1/2020.ACL-DEMOS.30.
    [17]
    ZHANG Saizheng, DINAN E, URBANEK J A, et al. Personalizing dialogue agents: I have a dog, do you have pets too?[C]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 2204–2213. doi: 10.18653/V1/P18-1205.
    [18]
    LI Jiwei, GALLEY M, BROCKETT C, et al. A diversity-promoting objective function for neural conversation models[C]. Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, USA, 2016: 110–119. doi: 10.18653/V1/N16-1014.
    [19]
    PAPINENI K, ROUKOS S, WARD T, et al. BLEU: A method for automatic evaluation of machine translation[C]. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Philadelphia, USA, 2022: 311–318. doi: 10.3115/1073083.1073135.
    [20]
    LIN C Y. ROUGE: A package for automatic evaluation of summaries[C]. Proceedings of Text Summarization Branches Out, Barcelona, Spain, 2004: 74–81.
    [21]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [22]
    CAI Hua, SHEN Xuli, XU Qing, et al. Improving empathetic dialogue generation by dynamically infusing commonsense knowledge[C]. Proceedings of Findings of the Association for Computational Linguistics, Toronto, Canada, 2023: 7858–7873. doi: 10.18653/V1/2023.FINDINGS-ACL.498.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article Metrics

    Article views (271) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return