Citation: | ZHU Zhenfang, LI Jiaxin, XU Fuyong, LIU Peiyu, ZHANG Guangyuan. Empathetic Dialogue Generation via Sentiment and Support Strategy[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3382-3389. doi: 10.11999/JEIT231417 |
[1] |
黄宏程, 苏美丹, 寇兰, 等. 基于主从博弈的多方人机交互对话心理模型[J]. 电子与信息学报, 2023, 45(5): 1758–1765. doi: 10.11999/JEIT220441.
HUANG Hongcheng, SU Meidan, KOU Lan, et al. Multi-party human-computer interaction dialogue psychology model based on stackelberg game[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1758–1765. doi: 10.11999/JEIT220441.
|
[2] |
GHOSH S, CHOLLET M, LAKSANA E, et al. Affect-LM: A neural language model for customizable affective text generation[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 634–642. doi: 10.18653/v1/P17-1059.
|
[3] |
ZHOU Hao, HUANG Minlie, ZHANG Tianyang, et al. Emotional chatting machine: Emotional conversation generation with internal and external memory[C]. Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 730–739. doi: 10.1609/AAAI.V32I1.11325.
|
[4] |
WEI Wei, LIU Jiayi, MAO Xianling, et al. Emotion-aware chat machine: Automatic emotional response generation for human-like emotional interaction[C]. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing, China, 2019: 1401–1410. doi: 10.1145/3357384.3357937.
|
[5] |
LIU Siyang, ZHENG Chujie, DEMASI O, et al. Towards emotional support dialog systems[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 3469–3483. doi: 10.18653/V1/2021.ACL-LONG.269.
|
[6] |
车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战、机遇与发展[J]. 中国科学: 信息科学, 2023, 53(9): 1645–1687. doi: 10.1360/SSI-2023-0113.
CHE Wanxiang, DOU Zhicheng, FENG Yansong, et al. Towards a comprehensive understanding of the impact of large language models on natural language processing: Challenges, opportunities and future directions[J]. SCIENTIA SINICA Informationis, 2023, 53(9): 1645–1687. doi: 10.1360/SSI-2023-0113.
|
[7] |
RASHKIN H, SMITH E M, LI M, et al. Towards empathetic open-domain conversation models: A new benchmark and dataset[C]. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 5370–5381. doi: 10.18653/V1/P19-1534.
|
[8] |
LIN Zhaojiang, MADOTTO A, SHIN J, et al. MoEL: Mixture of empathetic listeners[C]. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 121–132. doi: 10.18653/V1/D19-1012.
|
[9] |
MAJUMDER N, HONG Pengfei, PENG Shanshan, et al. MIME: MIMicking emotions for empathetic response generation[C]. Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 8968–8979. doi: 10.18653/V1/2020.EMNLP-MAIN.721.
|
[10] |
HESS U and FISCHER A. Emotional mimicry: Why and when we mimic emotions[J]. Social and Personality Psychology Compass, 2014, 8(2): 45–57. doi: 10.1111/spc3.12083.
|
[11] |
RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9.
|
[12] |
ZANDIE R and MAHOOR M H. Emptransfo: A multi-head transformer architecture for creating empathetic dialog systems[C]. Proceedings of the Thirty-Third International Florida Artificial Intelligence Research Society Conference, North Miami Beach, USA, 2020: 276–281.
|
[13] |
RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[J]. 2018.
|
[14] |
YU Dian and YU Zhou. MIDAS: A dialog act annotation scheme for open domain HumanMachine spoken conversations[C]. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, 2021: 1103–1120. doi: 10.18653/V1/2021.EACL-MAIN.94.
|
[15] |
QIAN Hongjin, DOU Zhicheng, ZHU Yutao, et al. Learning implicit user profile for personalized retrieval-based chatbot[C]. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Australia, 2021: 1467–1477. doi: 10.1145/3459637.3482269.
|
[16] |
ZHANG Yizhe, SUN Siqi, GALLEY M, et al. DIALOGPT: Large-Scale generative pre-training for conversational response generation[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2020: 270–278. doi: 10.18653/V1/2020.ACL-DEMOS.30.
|
[17] |
ZHANG Saizheng, DINAN E, URBANEK J A, et al. Personalizing dialogue agents: I have a dog, do you have pets too?[C]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 2204–2213. doi: 10.18653/V1/P18-1205.
|
[18] |
LI Jiwei, GALLEY M, BROCKETT C, et al. A diversity-promoting objective function for neural conversation models[C]. Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, USA, 2016: 110–119. doi: 10.18653/V1/N16-1014.
|
[19] |
PAPINENI K, ROUKOS S, WARD T, et al. BLEU: A method for automatic evaluation of machine translation[C]. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Philadelphia, USA, 2022: 311–318. doi: 10.3115/1073083.1073135.
|
[20] |
LIN C Y. ROUGE: A package for automatic evaluation of summaries[C]. Proceedings of Text Summarization Branches Out, Barcelona, Spain, 2004: 74–81.
|
[21] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[22] |
CAI Hua, SHEN Xuli, XU Qing, et al. Improving empathetic dialogue generation by dynamically infusing commonsense knowledge[C]. Proceedings of Findings of the Association for Computational Linguistics, Toronto, Canada, 2023: 7858–7873. doi: 10.18653/V1/2023.FINDINGS-ACL.498.
|