Citation: | LIU Shuai, XU Yuanyuan, YAN Fenggang, JIN Ming. Off-grid DOA Estimation Algorithm Based on Taylor-expansion and Alternating Projection Maximum Likelihood[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3219-3227. doi: 10.11999/JEIT231376 |
[1] |
SHAMAEI K and KASSAS Z M. A joint TOA and DOA acquisition and tracking approach for positioning with LTE signals[J]. IEEE Transactions on Signal Processing, 2021, 69: 2689–2705. doi: 10.1109/TSP.2021.3068920.
|
[2] |
LONMO T I B, AUSTENG A, and HANSEN R E. Data-driven autocalibration for swath sonars[J]. IEEE Journal of Oceanic Engineering, 2021, 46(3): 979–987. doi: 10.1109/JOE.2020.3036184.
|
[3] |
SCHMID R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
|
[4] |
ROY R and KAILATH T. ESPRIT — estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276.
|
[5] |
WAX M and ADLER A. Direction of arrival estimation in the presence of model errors by signal subspace matching[J]. Signal Processing, 2021, 181: 107900. doi: 10.1016/j.sigpro.2020.107900.
|
[6] |
SUN Meng, WANG Yide, and PAN Jingjing. Direction of arrival estimation by a modified orthogonal propagator method with spline interpolation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11389–11393. doi: 10.1109/TVT.2019.2944516.
|
[7] |
ASGHARI M, ZAREINEJAD, REZAEI S M, et al. DOA estimation of noncircular signals under impulsive noise using a novel empirical characteristic function-based MUSIC[J]. Circuits, Systems, and Signal Processing, 2023, 42(6): 3706–3743. doi: 10.1007/s00034-022-02289-9.
|
[8] |
LIN Hongguang, JIN Longsheng, DING Ruixuan, et al. DOA estimation method for incoherently distributed sources based on spatial–temporal generalized ESPRIT[J]. AEU - International Journal of Electronics and Communications, 2023, 168: 154701. doi: 10.1016/j.aeue.2023.154701.
|
[9] |
ZHANG Wei, HAN Yong, JIN Ming, et al. An improved ESPRIT-like algorithm for coherent signals DOA estimation[J]. IEEE Communications Letters, 2020, 24(2): 339–343. doi: 10.1109/LCOMM.2019.2953851.
|
[10] |
YANG Zai, CHEN Xinyao, and WU Xunmeng. A robust and statistically efficient maximum-likelihood method for DOA estimation using sparse linear arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6798–6812. doi: 10.1109/TAES.2023.3280894.
|
[11] |
GAO Yumeng, LI Jianghui, BAI Yechao, et al. An improved subspace weighting method using random matrix theory[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(9): 1302–1307. doi: 10.1631/FITEE.1900463.
|
[12] |
CADZOW J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(7): 965–979. doi: 10.1109/29.1618.
|
[13] |
SWINDLEHURST A. Alternative algorithm for maximum likelihood DOA estimation and detection[J]. IEE Proceedings –Radar, Sonar and Navigation, 1994, 141(6): 293–299. doi: 10.1049/ip-rsn:19941366.
|
[14] |
VIBERG M, OTTERSTEN B, and KAILATH T. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Transactions on Signal Processing, 1991, 39(11): 2436–2449. doi: 10.1109/78.97999.
|
[15] |
ZISKIND I and WAX M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(10): 1553–1560. doi: 10.1109/29.7543.
|
[16] |
FU Haosheng, DAI Fengzhou, and HONG Ling. Off-grid error calibration for DOA estimation based on sparse Bayesian learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16293–16307. doi: 10.1109/TVT.2023.3298965.
|
[17] |
GUO Qijia, XIN Zhinan, ZHOU Tian, et al. Off-grid space alternating sparse Bayesian learning[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1002310. doi: 10.1109/TIM.2023.3243677.
|
[18] |
YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378.
|
[19] |
MA Yanan, CAO Xianbin, and WANG Xiangrong. Efficient off-grid DOA estimation based on modified MUSIC for arbitrary linear arrays[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–5. doi: 10.1109/ICSIDP47821.2019.9173323.
|
[20] |
曾富红, 彭占立, 司伟建, 等. 基于双平行互质极化敏感阵列的二维非网格DOA及极化参数估计[J]. 航空兵器, 2023, 30(3): 129–135. doi: 10.12132/ISSN.1673-5048.2022.0191.
ZENG Fuhong, PENG Zhanli, SI Weijian, et al. Two-dimensional off-grid DOA and polarization parameter estimation for parallel coprime polarization sensitive array[J]. Aero Weaponry, 2023, 30(3): 129–135. doi: 10.12132/ISSN.1673-5048.2022.0191.
|
[21] |
揭允康, 张雯, 李想, 等. 一种基于迭代自适应的离网格DOA估计方法[J]. 电子与信息学报, 2023, 45(10): 3805–3811. doi: 10.11999/JEIT221061.
JIE Yunkang, ZHANG Wen, LI Xiang, et al. An off-grid DOA estimation based on iterative adaptive approach[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3805–3811. doi: 10.11999/JEIT221061.
|
[22] |
张贤达. 矩阵分析与应用[M]. 2版. 北京: 清华大学出版社, 2013: 50.
ZHANG Xianda. Matrix Analysis and Applications[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 50.
|