Citation: | ZHANG Juan, ZHUANG Lehui, LI Yinan, LI Hong, DOU Haofeng. A Method for Radio Frequency Interference Space Angle Sparse Bayesian Estimating in Synthetic Aperture Microwave Radiometer[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3202-3209. doi: 10.11999/JEIT231367 |
[1] |
何越, 田晓明, 祝颂, 等. 基于GNSS/MET和微波辐射计资料的合肥地区大气可降水量变化特征分析[J]. 气象水文海洋仪器, 2023, 40(3): 15–19. doi: 10.3969/j.issn.1006-009X.2023.03.005.
HE Yue, TIAN Xiaoming, ZHU Song, et al. Analysis on variation characteristics of atmospheric precipitable water in Hefei based on GNSS/MET and microwave radiometer data[J]. Meteorological, Hydrological and Marine Instruments, 2023, 40(3): 15–19. doi: 10.3969/j.issn.1006-009X.2023.03.005.
|
[2] |
伍晋. 基于综合孔径辐射计的海洋盐度遥感外部源校正方法研究[D]. [博士论文], 华中科技大学, 2022. doi: 10.27157/d.cnki.ghzku.2022.004416.
WU Jin. Research on foreign sources correction method for sea surface salinity remote sensing based on synthetic aperture radiometer[D]. [Ph. D. dissertation], Huazhong University of Science and Technology, 2022. doi: 10.27157/d.cnki.ghzku.2022.004416.
|
[3] |
党张利, 穆建华, 闫军, 等. 六盘山区两类雾物理结构的初步观测研究[J]. 干旱区地理, 2023, 46(4): 574–582. doi: 10.12118/j.issn.1000-6060.2022.382.
DANG Zhangli, MU Jianhua, YAN Jun, et al. Preliminary observations study of physical structures of two types of fog in Liupan Mountain areas[J]. Arid Land Geography, 2023, 46(4): 574–582. doi: 10.12118/j.issn.1000-6060.2022.382.
|
[4] |
CAMPS A J, CORBELLA I, TORRES F, et al. RF interference analysis in aperture synthesis interferometric radiometers: Application to L-band MIRAS instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 942–950. doi: 10.1109/36.841976.
|
[5] |
NJOKU E G, ASHCROFT P, CHAN T K, et al. Global survey and statistics of radio-frequency interference in AMSR-E land observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 938–947. doi: 10.1109/TGRS.2004.837507.
|
[6] |
MARTÍN-NEIRA M, LEVINE D M, KERR Y, et al. Microwave interferometric radiometry in remote sensing: An invited historical review[J]. Radio Science, 2014, 49(6): 415–449. doi: 10.1002/2013RS005230.
|
[7] |
OLIVA R, NIETO S, and FÉLIX-REDONDO F. RFI detection algorithm: Accurate geolocation of the interfering sources in SMOS images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 4993–4998. doi: 10.1109/TGRS.2013.2262721.
|
[8] |
CASTRO R, GUTIERREZ A, and BARBOSA J. A first set of techniques to detect radio frequency interferences and mitigate their impact on SMOS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1440–1447. doi: 10.1109/TGRS.2011.2179304.
|
[9] |
PARK H, CAMPS A, and GONZÁLEZ-GAMBAU V. Accurate geolocation of RFI sources in SMOS imagery based on superresolution algorithms[C]. 2014 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Pasadena, USA, 2014: 29–32. doi: 10.1109/MicroRad.2014.6878902.
|
[10] |
PARK H, GONZÁLEZ-GAMBAU V, and CAMPS A. High angular resolution RFI localization in synthetic aperture interferometric radiometers using direction-of-arrival estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 102–106. doi: 10.1109/LGRS.2014.2327006.
|
[11] |
MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/TSP.2005.850882.
|
[12] |
ANTERRIEU E, KHAZAAL A, CABOT F, et al. Geolocation of RFI sources with sub-kilometric accuracy from SMOS interferometric data[J]. Remote Sensing of Environment, 2016, 180: 76–84. doi: 10.1016/j.rse.2016.02.007.
|
[13] |
杨磊, 夏亚波, 廖仙华, 等. 双层稀疏贝叶斯学习ISAR超分辨成像算法[J]. 系统工程与电子技术, 2023, 45(5): 1371–1379. doi: 10.12305/j.issn.1001-506X.2023.05.13.
YANG Lei, XIA Yabo, LIAO Xianhua, et al. Super-resolution ISAR imagery algorithm based on bi-sparsity Bayesian learning[J]. Systems Engineering and Electronics, 2023, 45(5): 1371–1379. doi: 10.12305/j.issn.1001-506X.2023.05.13.
|
[14] |
许煜辉. 基于贝叶斯学习的阵列天线故障诊断方法研究[D]. [硕士论文], 南京邮电大学, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000977.
XU Yuhui. Research on fault diagnosis of antenna arrays based on Bayesian learning[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000977.
|
[15] |
章涛, 张亚娟, 孙刚, 等. 稀疏贝叶斯字典学习空时机动目标参数估计算法[J]. 电子与信息学报, 2022, 44(8): 2884–2892. doi: 10.11999/JEIT210567.
ZHANG Tao, ZHANG Yajuan, SUN Gang, et al. Maneuvering target parameter estimation based on sparse Bayesian dictionary learning in space-time adaptive processing[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2884–2892. doi: 10.11999/JEIT210567.
|
[16] |
CORBELLA I, TORRES F, BLANCH S, et al. Inter-element phase calibration in interferometric radiometers[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 3976–3979. doi: 10.1109/IGARSS.2006.1020.
|
[17] |
CORBELLA I, DUFFO N, VALL-LLOSSERA M, et al. The visibility function in interferometric aperture synthesis radiometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1677–1682. doi: 10.1109/TGRS.2004.830641.
|
[18] |
WU Qisong, ZHANG Y D, AMIN M G, et al. Complex multitask Bayesian compressive sensing[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 3375–3379. doi: 10.1109/ICASSP.2014.6854226.
|
[19] |
李军. 基于虚拟天线阵的综合孔径辐射计成像方法研究[D]. [博士论文], 华中科技大学, 2017.
LI Jun. Research on imaging method of synthetic aperture interferometric radiometry based on virtual antenna arrays[D]. [Ph. D. dissertation], Huazhong University of Science and Technology, 2017.
|