Advanced Search
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
LIU Gaohui, XI Hongen. Individual Identification Method for Communication Emitters Based on Improved Variational Modal Decomposition and Multiple Features[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4044-4052. doi: 10.11999/JEIT231348
Citation: LIU Gaohui, XI Hongen. Individual Identification Method for Communication Emitters Based on Improved Variational Modal Decomposition and Multiple Features[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4044-4052. doi: 10.11999/JEIT231348

Individual Identification Method for Communication Emitters Based on Improved Variational Modal Decomposition and Multiple Features

doi: 10.11999/JEIT231348
Funds:  The National Natural Science Foundation of China (61671375)
  • Received Date: 2023-12-05
  • Rev Recd Date: 2024-09-05
  • Available Online: 2024-09-11
  • Publish Date: 2024-10-30
  • Aiming at the difficulties in extracting fingerprint features from communication emitters and the low recognition rate of single features, considering the nonlinear and non-stationary characteristics of subtle features of communication emitters, this paper proposes an individual identification method for communication emitters based on improved variational mode decomposition and multiple features. Firstly, in order to obtain the optimal combination of decomposition levels and penalty factors for variational mode decomposition, the variational modal decomposition of communication emitter symbol waveform signals is improved with whale optimization algorithm, in which the sequence complexity is used as the stopping criterion in this method to enable each symbol waveform signal to adaptively decompose several high-frequency signal components containing nonlinear fingerprint features and low-frequency components of data information; Then, according to the relevant threshold, the number of high-frequency signal component layers is selected that can best represent the nonlinear characteristics of the radiation source and the fuzzy entropy, permutation entropy, Higuchi dimension, and Katz dimension are extracted to form a multi-domain joint feature vector; Finally, the recognition and classification of communication emitters are achieved through convolutional neural networks, and recognition and classification experiments are conducted using the Oracle public dataset. The experimental results show that this method has high recognition accuracy and good noise immunity.
  • loading
  • [1]
    HUANG Guangquan, YUAN Yingjun, WANG Xiang, et al. Specific emitter identification based on nonlinear dynamical characteristics[J]. Canadian Journal of Electrical and Computer Engineering, 2016, 39(1): 34–41. doi: 10.1109/CJECE.2015.2496143.
    [2]
    任东方, 张涛, 韩洁. 结合ITD与非线性分析的通信辐射源个体识别方法[J]. 信号处理, 2018, 34(3): 331–339. doi: 10.16798/j.issn.1003-0530.2018.03.010.

    REN Dongfang, ZHANG Tao, and HAN Jie. Approach of specific communication emitter identification combining ITD and nonlinear analysis[J]. Journal of Signal Processing, 2018, 34(3): 331–339. doi: 10.16798/j.issn.1003-0530.2018.03.010.
    [3]
    XIE Yang, WANG Shilian, ZHANG Eryang, et al. Specific emitter Identification based on nonlinear complexity of signal[C]. 2016 IEEE International Conference on Signal Processing, Communications and Computing, Hong Kong, China, 2016: 1–6. doi: 10.1109/ICSPCC.2016.7753733.
    [4]
    LU N, ZHOU T X, WEI J F, et al. Application of a whale optimized variational mode decomposition method based on envelope sample entropy in the fault diagnosis of rotating machinery[J]. Measurement Science and Technology, 2022, 33(1): 015014. doi: 10.1088/1361-6501/ac3470.
    [5]
    ELMAGHBUB A and HAMDAOUI B. Leveraging hardware-impaired out-of-band information through deep neural networks for robust wireless device classification[J]. arXiv: 2004.11126, 2020. doi: 10.48550/arXiv.2004.11126.
    [6]
    BREMNES K, MOEN R, YEDURI S R, et al. Classification of UAVs utilizing fixed boundary empirical wavelet sub-bands of RF fingerprints and deep convolutional neural network[J]. IEEE Sensors Journal, 2022, 22(21): 21248–21256. doi: 10.1109/JSEN.2022.3208518.
    [7]
    ZHANG Junqing, WOODS R, SANDELL M, et al. Radio frequency fingerprint identification for narrowband systems, modelling and classification[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3974–3987. doi: 10.1109/TIFS.2021.3088008.
    [8]
    HUANG Yi, HU Aiqun, FAN Jiayi, et al. Joint estimation of transmitter IQ imbalance and nonlinearity with multipath in OFDM systems[C]. 2023 IEEE 98th Vehicular Technology Conference, Hong Kong, China, 2023: 1–6. doi: 10.1109/VTC2023-Fall60731.2023.10333512.
    [9]
    DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675.
    [10]
    MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008.
    [11]
    ZAHID M U, NISAR M D, and SHAH M H. Radio frequency fingerprint extraction based on multiscale approximate entropy[J]. Physical Communication, 2022, 55: 101927. doi: 10.1016/j.phycom.2022.101927.
    [12]
    BANDT C and POMPE B. Permutation entropy: A natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102. doi: 10.1103/PhysRevLett.88.174102.
    [13]
    CHEN Weiting, WANG Zhizhong, XIE Hongbo, et al. Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2): 266–272. doi: 10.1109/TNSRE.2007.897025.
    [14]
    KATZ M J. Fractals and the analysis of waveforms[J]. Computers in Biology and Medicine, 1988, 18(3): 145–156. doi: 10.1016/0010-4825(88)90041-8.
    [15]
    SHAMSI E, AHMADI-PAJOUH M A, and SEIFI ALA T. Higuchi fractal dimension: An efficient approach to detection of brain entrainment to theta binaural beats[J]. Biomedical Signal Processing and Control, 2021, 68: 102580. doi: 10.1016/j.bspc.2021.102580.
    [16]
    SANKHE K, BELGIOVINE M, ZHOU Fan, et al. No radio left behind: Radio fingerprinting through deep learning of physical-layer hardware impairments[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 165–178. doi: 10.1109/TCCN.2019.2949308.
    [17]
    DENG Shouyun, HUANG Zhitao, WANG Xiang, et al. Radio frequency fingerprint extraction based on multidimension permutation entropy[J]. International Journal of Antennas and Propagation, 2017, 2017(1): 1538728. doi: 10.1155/2017/1538728.
    [18]
    SUN Liting, WANG Xiang, YANG Afeng, et al. Radio frequency fingerprint extraction based on multi-dimension approximate entropy[J]. IEEE Signal Processing Letters, 2020, 27: 471–475. doi: 10.1109/LSP.2020.2978333.
    [19]
    HE Boxiang and WANG Fanggang. Cooperative specific emitter identification via multiple distorted receivers[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3791–3806. doi: 10.1109/TIFS.2020.3001721.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (106) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return