Citation: | LI Hai, ZHANG Qiang, ZHOU AnYu, XIONG Yu. Convolutional Neural Network STAP Low Level Wind Shear Wind Speed Estimation[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3193-3201. doi: 10.11999/JEIT231335 |
[1] |
LIN Caiyan, ZHANG Kaijun, CHEN Xintao, et al. Overview of low-level wind shear characteristics over Chinese mainland[J]. Atmosphere, 2021, 12(5): 628. doi: 10.3390/atmos12050628.
|
[2] |
刘琴, 李明磊, 汪玲, 等. 机载气象雷达目标的三维建模方法研究[J]. 雷达科学与技术, 2022, 20(4): 435–441. doi: 10.3969/j.issn.1672-2337.2022.04.012.
LIU Qin, LI Minglei, WANG Ling, et al. Research on 3D modeling of airborne weather radar target[J]. Radar Science and Technology, 2022, 20(4): 435–441. doi: 10.3969/j.issn.1672-2337.2022.04.012.
|
[3] |
吴仁彪, 张彪, 李海, 等. 基于空时自适应处理的低空风切变风速估计方法[J]. 电子与信息学报, 2015, 37(3): 631–636. doi: 10.11999/JEIT140697.
WU Renbiao, ZHANG Biao, LI Hai, et al. Wind speed estimation for low-attitude windshear based on space-time adaptive processing[J]. Journal of Electronics & Information Technology, 2015, 37(3): 631–636. doi: 10.11999/JEIT140697.
|
[4] |
宋迪. 基于RD-STAP的线性调频连续波低空风切变检测方法研究[D]. [硕士论文], 中国民航大学, 2020. doi: 10.27627/d.cnki.gzmhy.2020.000427.
SONG Di. Detection of linear frequency modulated continuous wave low altitude wind-shear based on RD-STAP[D]. [Master dissertation], Civil Aviation University of China, 2020. doi: 10.27627/d.cnki.gzmhy.2020.000427.
|
[5] |
BI Fukun, ZHANG Dongyan, CAI Xichang, et al. Fast reduced-rank STAP algorithm based on Gram–Schmidt orthogonalisation for airborne radar[J]. International Journal of Electronics, 2015, 102(8): 1382–1393. doi: 10.1080/00207217.2014.981872.
|
[6] |
李仲悦, 王彤. 基于稀疏贝叶斯学习的稳健STAP算法[J]. 系统工程与电子技术, 2023, 45(10): 3032–3040. doi: 10.12305/j.issn.1001-506X.2023.10.05.
LI Zhongyue and WANG Tong. Sparse Bayesian learning-based robust STAP algorithm[J]. Systems Engineering and Electronics, 2023, 45(10): 3032–3040. doi: 10.12305/j.issn.1001-506X.2023.10.05.
|
[7] |
REN Bing and WANG Tong. A novel fast sparse Bayesian learning STAP algorithm for conformal array radar[J]. Remote Sensing, 2023, 15(11): 2824. doi: 10.3390/RS15112824.
|
[8] |
WEN Xiaoqin and HAN Chongzhao. Direct data domain approach to space-time adaptive processing[J]. Journal of Systems Engineering and Electronics, 2006, 17(1): 59–64. doi: 10.1016/S1004-4132(06)60011-X.
|
[9] |
WANG Yikai and HE Zishu. Thinned knowledge-aided STAP by exploiting structural covariance matrix[J]. IET Radar, Sonar & Navigation, 2017, 11(8): 1266–1275. doi: 10.1049/iet-rsn.2017.0060.
|
[10] |
朱晗归, 冯为可, 冯存前, 等. 机载雷达深度展开空时自适应处理方法[J]. 雷达学报, 2022, 11(4): 676–691. doi: 10.12000/JR22051.
ZHU Hangui, FENG Weike, FENG Cunqian, et al. Deep unfolding based space-time adaptive processing method for airborne radar[J]. Journal of Radars, 2022, 11(4): 676–691. doi: 10.12000/JR22051.
|
[11] |
CUI Ning, XING Kun, DUAN Keqing, et al. Knowledge‐aided block sparse Bayesian learning STAP for phased‐array MIMO airborne radar[J]. IET Radar, Sonar & Navigation, 2021, 15(12): 1628–1642. doi: 10.1049/RSN2.12152.
|
[12] |
李海, 雍从建, 范懿, 等. 幅相误差下基于CMCAP-JDL的低空风切变风速估计[J]. 信号处理, 2020, 36(4): 502–510. doi: 10.16798/j.issn.1003-0530.2020.04.004.
LI Hai, YONG Congjian, FAN Yi, et al. The estimation of wind speed in low-altitude wind-shear based on CMCAP-JDL under the amplitude and phase error[J]. Journal of Signal Processing, 2020, 36(4): 502–510. doi: 10.16798/j.issn.1003-0530.2020.04.004.
|
[13] |
BOYER E, LARZABAL P, ADNET C, et al. Parametric spectral moments estimation for wind profiling radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(8): 1859–1868. doi: 10.1109/TGRS.2003.813487.
|
[14] |
WARD J. Space-time Adaptive Processing for Airborne Radar[R]. 1994: 25–45.
|
[15] |
李海, 程伟杰, 谢瑞杰. 基于同伦稀疏STAP的低空风切变风速估计[J]. 系统工程与电子技术, 2022, 44(4): 1174–1181. doi: 10.12305/j.issn.1001-506X.2022.04.13.
LI Hai, CHENG Weijie, and XIE Ruijie. Wind speed estimation of low-altitude wind-shear based on homotopy sparse STAP[J]. Systems Engineering and Electronics, 2022, 44(4): 1174–1181. doi: 10.12305/j.issn.1001-506X.2022.04.13.
|
[16] |
JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509–4522. doi: 10.1109/TIP.2017.2713099.
|
[17] |
XUE Liang, LIU Jie, WEN Guilin, et al. Efficient, high-resolution topology optimization method based on convolutional neural networks[J]. Frontiers of Mechanical Engineering, 2021, 16(1): 80–96. doi: 10.1007/S11465-020-0614-2.
|
[18] |
DUAN Keqing, CHEN Hui, XIE Wenchong, et al. Deep learning for high-resolution estimation of clutter angle-Doppler spectrum in STAP[J]. IET Radar, Sonar & Navigation, 2022, 16(2): 193–207. doi: 10.1049/RSN2.12176.
|
[19] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–15.
|
[20] |
陆军, 郦能敬, 曹晨, 等. 预警机系统导论[M]. 2版. 北京: 国防工业出版社, 2011: 158–160.
LU Jun, LI Nengjing, CAO Chen, et al. Introduction to Airborne Early Warning System[M]. 2nd ed. Beijing: National Defense Industry Press, 2011: 158–160.
|
[21] |
李海, 李怡静, 吴仁彪. 载机偏航下基于广义相邻多波束自适应处理的低空风切变风速估计[J]. 电子与信息学报, 2019, 41(7): 1728–1734. doi: 10.11999/JEIT180758.
LI Hai, LI Yijing, and WU Renbiao. Generalized adjacent multi-beam adaptive processing based low-altitude wind-shear wind speed estimation under aircraft yawing[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1728–1734. doi: 10.11999/JEIT180758.
|
[22] |
张瑞, 全英汇, 朱圣棋, 等. 基于改进OMP算法的稀疏目标微波关联成像方法[J]. 系统工程与电子技术, 2021, 43(7): 1756–1765. doi: 10.12305/j.issn.1001-506X.2021.07.04.
ZHANG Rui, QUAN Yinghui, ZHU Shengqi, et al. Microwave correlation imaging method based on improved OMP algorithm for sparse targets[J]. Systems Engineering and Electronics, 2021, 43(7): 1756–1765. doi: 10.12305/j.issn.1001-506X.2021.07.04.
|
[23] |
DUAN Keqing, WANG Zetao, XIE Wenchong, et al. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar[J]. IET Signal Processing, 2017, 11(5): 544–553. doi: 10.1049/iet-spr.2016.0183.
|
[24] |
ICHIKAWA M, KIKUMA N, SAKAKIBARA K, et al. Performance improvement of TSVD-FOCUSS algorithm in DOA estimation using array antenna[C/OL]. 2021 International Conference on Emerging Technologies for Communications, 2021. doi: 10.34385/PROC.68.P2-2.
|