Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LIU Tao, WANG Yuhan, LI Yubo. Research on Construction Methods of Low Correlation zone Complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3410-3418. doi: 10.11999/JEIT231332
Citation: LIU Tao, WANG Yuhan, LI Yubo. Research on Construction Methods of Low Correlation zone Complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3410-3418. doi: 10.11999/JEIT231332

Research on Construction Methods of Low Correlation zone Complementary Sequence Sets

doi: 10.11999/JEIT231332 cstr: 32379.14.JEIT231332
Funds:  The National Natural Science Foundation of China (62241110), The Science and Technology Project of Hebei Education Department (ZD2021105), Hebei Province Key Laboratory Project (202250701010046)
  • Received Date: 2023-12-04
  • Rev Recd Date: 2024-04-11
  • Available Online: 2024-05-13
  • Publish Date: 2024-08-10
  • Perfect complementary sequence is a kind of signal with ideal correlation function, which is widely used in multiple access communication system, radar waveform design and so on. However, the set size of perfect complementary sequences is at most equal to the number of its subsequences. In order to expand the number of complementary sequences, the construction methods of aperiodic low correlation zone complementary sequence set are studied in this paper. First, two kinds of mapping functions on finite fields are proposed, and then two kinds of low correlation zone complementary sequence set with asymptotically optimal parameters are obtained. The number of these kinds of low correlation zone complementary sequence set are more than that of the perfect complementary sequence set, thereby supporting more users in the communication system.
  • loading
  • [1]
    CHEN H H, YEH J F, and SUEHIRO N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications[J]. IEEE Communications Magazine, 2001, 39(10): 126–135. doi: 10.1109/35.956124.
    [2]
    ABEBE A T and KANG C G. Multiple codebook-based non-orthogonal multiple access[J]. IEEE Wireless Communications Letters, 2020, 9(5): 683–687. doi: 10.1109/LWC.2020.2965939.
    [3]
    CHEN Y M and CHEN Jianwei. On the design of near-optimal sparse code multiple access codebooks[J]. IEEE Transactions on Communications, 2020, 68(5): 2950–2962. doi: 10.1109/TCOMM.2020.2974213.
    [4]
    LI Fengjie, JIANG Yi, DU Cheng, et al. Construction of Golay complementary matrices and its applications to MIMO omnidirectional transmission[J]. IEEE Transactions on Signal Processing, 2021, 69: 2100–2113. doi: 10.1109/TSP.2021.3067467.
    [5]
    SU Dongliang, JIANG Yi, WANG Xin, et al. Omnidirectional precoding for massive MIMO with uniform rectangular array—Part I: Complementary codes-based schemes[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4761–4771. doi: 10.1109/TSP.2019.2931205.
    [6]
    CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Code-division OFDM joint communication and sensing system for 6G machine-type communication[J]. IEEE Internet of Things Journal, 2021, 8(15): 12093–12105. doi: 10.1109/JIOT.2021.3060858.
    [7]
    SHARMA S and KOIVUNEN V. Multicarrier DS-CDMA based integrated sensing and communication waveform designs[C]. MILCOM 2022–2022 IEEE Military Communications Conference (MILCOM), Rockville, USA, 2022: 95–101. doi: 10.1109/MILCOM55135.2022.10017835.
    [8]
    陈晓玉, 彭秀英, 王成瑞, 等. 周期准互补序列集构造法[J]. 电子与信息学报, 2022, 44(11): 4034–4040. doi: 10.11999/JEIT210881.

    CHEN Xiaoyu, PENG Xiuying, WANG Chengrui, et al. Constructions of periodic quasi-complementary sequence sets[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4034–4040. doi: 10.11999/JEIT210881.
    [9]
    陈晓玉, 王成瑞, 刘凡. 新的周期准互补序列集构造方法[J]. 通信学报, 2023, 44(5): 206–212. doi: 10.11959/j.issn.1000-436x.2023100.

    CHEN Xiaoyu, WANG Chengrui, and LIU Fan. New construction method of periodic quasi-complementary sequence set[J]. Journal on Communications, 2023, 44(5): 206–212. doi: 10.11959/j.issn.1000-436x.2023100.
    [10]
    LI Yubo, TIAN Liying, and XU Chengqian. Constructions of asymptotically optimal aperiodic quasi-complementary sequence sets[J]. IEEE Transactions on Communications, 2019, 67(11): 7499–7511. doi: 10.1109/TCOMM.2019.2933517.
    [11]
    DAS S, PARAMPALLI U, MAJHI S, et al. New optimal Z-complementary code sets based on generalized paraunitary matrices[J]. IEEE Transactions on Signal Processing, 2020, 68: 5546–5558. doi: 10.1109/TSP.2020.3021977.
    [12]
    SARKAR P, MAJHI S, and LIU Zilong. Pseudo-Boolean functions for optimal Z-complementary code sets with flexible lengths[J]. IEEE Signal Processing Letters, 2021, 28: 1350–1354. doi: 10.1109/LSP.2021.3091886.
    [13]
    WU S W, ŞAHIN A, HUANG Zhenming, et al. Z-complementary code sets with flexible lengths from generalized boolean functions[J]. IEEE Access, 2021, 9: 4642–4652. doi: 10.1109/ACCESS.2020.3047955.
    [14]
    LI Yu, YAN Tongjiang, and LV Chuan. Construction of a near-optimal quasi-complementary sequence set from almost difference set[J]. Cryptography and Communications, 2019, 11(4): 815–824. doi: 10.1007/s12095-018-0330-5.
    [15]
    LUO Gaojun, CAO Xiwang, SHI Minjia, et al. Three new constructions of asymptotically optimal periodic quasi-complementary sequence sets with small alphabet sizes[J]. IEEE Transactions on Information Theory, 2021, 67(8): 5168–5177. doi: 10.1109/TIT.2021.3068474.
    [16]
    LIU Tao, XU Chengqian, and LI Yubo. Multiple complementary sequence sets with low inter-set cross-correlation property[J]. IEEE Signal Processing Letters, 2019, 26(6): 913–917. doi: 10.1109/LSP.2019.2902752.
    [17]
    ZHOU Zhengchun, LIU Fangrui, ADHIKARY A R, et al. A generalized construction of multiple complete complementary codes and asymptotically optimal aperiodic quasi-complementary sequence sets[J]. IEEE Transactions on Communications, 2020, 68(6): 3564–3571. doi: 10.1109/TCOMM.2020.2978182.
    [18]
    LIU Zilong, GUAN Yongliang, NG B C, et al. Correlation and set size bounds of complementary sequences with low correlation zone[J]. IEEE Transactions on Communications, 2011, 59(12): 3285–3289. doi: 10.1109/TCOMM.2011.071111.100608.
    [19]
    LIU Tao, XU Chengqian, and LI Yubo. Binary complementary sequence set with low correlation zone[J]. IEEE Signal Processing Letters, 2020, 27: 1550–1554. doi: 10.1109/LSP.2020.3018628.
    [20]
    ADHIKARY A R, FENG Yanghe, ZHOU Zhengchun, et al. Asymptotically optimal and near-optimal aperiodic quasi-complementary sequence sets based on Florentine rectangles[J]. IEEE Transactions on Communications, 2022, 70(3): 1475–1485. doi: 10.1109/TCOMM.2021.3132364.
    [21]
    SARKAR P, LI Chunlei, MAJHI S, et al. New correlation bound and construction of quasi-complementary sequence sets[J]. IEEE Transactions on Information Theory, 2024, 70(3): 2201–2223. doi: 10.1109/TIT.2024.3352895.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (193) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return