Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
ZHANG Yuan, LUO Jingru, ZHANG Jiliang. SDL PUF: A High Reliability Self-Adaption Deviation Locking PUF[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2274-2280. doi: 10.11999/JEIT231313
Citation: ZHANG Yuan, LUO Jingru, ZHANG Jiliang. SDL PUF: A High Reliability Self-Adaption Deviation Locking PUF[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2274-2280. doi: 10.11999/JEIT231313

SDL PUF: A High Reliability Self-Adaption Deviation Locking PUF

doi: 10.11999/JEIT231313
Funds:  The National Natural Science Foundation of China(U20A20202, 62122023)
  • Received Date: 2023-11-29
  • Rev Recd Date: 2024-05-21
  • Available Online: 2024-05-23
  • Publish Date: 2024-05-30
  • As a novel hardware security primitive, Physical Unclonable Function (PUF) extracts process deviations to generate a unique response sequence, providing a root of trust for computing systems. However, existing PUFs based on Field Programmable Gate Arrays (FPGAs) cannot maintain high reliability over a wide range of temperatures and voltages. In this work, we propose a Self-Timed Ring (STR) based Self-adaption Deviation Locking PUF (SDL PUF). Firstly, the PUF response is generated utilizing the oscillation frequency difference caused by the STR delay. Secondly, the adaptive configuration in the initialization stage can effectively expand the deviation of the event arrival time in the STR, substantially enhancing the reliability of PUF. Finally, a comparator obfuscation strategy is proposed, automatically configuring the comparator by extracting the process deviation to resist the side-channel attack. The proposed structure is implemented on a Xilinx Virtex-6 FPGA. Experimental results show that the proposed SDL PUF achieves 0 bit error rate in the temperature range of 0°C~80°C and the voltage range of 0.85~1.15V, and ensures 49.29% uniqueness and 49.84% uniformity while maintaining high reliability.
  • loading
  • [1]
    福布斯: 2016年物联网预测和市场估算总结[EB/OL]. http://tech.163.com/16/1130/07/C73Q381P00097U7R.html, 2016.
    [2]
    Grand View Research, Inc. IoT security market size worth $9.88 billion By 2025 | CAGR: 29.7%[EB/OL]. https://www.grandviewresearch.com/press-release/global-internet-of-things-iot-security-market, 2018.
    [3]
    杨庚, 许建, 陈伟, 等. 物联网安全特征与关键技术[J]. 南京邮电大学学报: 自然科学版, 2010, 30(4): 20–29. doi: 10.3969/j.issn.1673-5439.2010.04.004.

    YANG Geng, XU Jian, CHEN Wei, et al. Security characteristic and technology in the internet of things[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2010, 30(4): 20–29. doi: 10.3969/j.issn.1673-5439.2010.04.004.
    [4]
    XU Chongyao, ZHANG Jieyun, LAW M K, et al. Transfer-path-based hardware-reuse strong PUF achieving modeling attack resilience with200 million training CRPs[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2188–2203. doi: 10.1109/TIFS.2023.3263621.
    [5]
    汪鹏君, 连佳娜, 陈博. 基于序列密码的强PUF抗机器学习攻击方法[J]. 电子与信息学报, 2021, 43(9): 2474–2481. doi: 10.11999/JEIT210726.

    WANG Pengjun, LIAN Jiana, and CHEN Bo. Sequence cipher based machine learning-attack resistance method for strong-PUF[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2474–2481. doi: 10.11999/JEIT210726.
    [6]
    ZHANG Jiliang, SHEN Chaoqun, GUO Zhiyang, et al. CT PUF: Configurable tristate PUF against machine learning attacks for IoT security[J]. IEEE Internet of Things Journal, 2022, 9(16): 14452–14462. doi: 10.1109/JIOT.2021.3090475.
    [7]
    ZHANG Jiliang, DING Lin, CHEN Zhuojun, et al. DA PUF: Dual-state analog PUF[C]. The 59th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2022: 73–78. doi: 10.1145/3489517.3530412.
    [8]
    DELLA SALA R and SCOTTI G. A novel FPGA implementation of the NAND-PUF with minimal resource usage and high reliability[J]. Cryptography, 2023, 7(2): 18. doi: 10.3390/cryptography7020018.
    [9]
    GAN Jiayan, ZHOU Jun, and WANG Ning. A FPGA-based RO PUF with LUT-based self-compare structure and adaptive counter time period tuning[C]. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018: 1–5. doi: 10.1109/ISCAS.2018.8351014.
    [10]
    DELLA SALA R, BELLIZIA D, and SCOTTI G. A lightweight FPGA compatible weak-PUF primitive based on XOR gates[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(6): 2972–2976. doi: 10.1109/TCSII.2022.3156788.
    [11]
    STREIT F J, KRÜGER P, BECHER A, et al. Design and evaluation of a tunable PUF architecture for FPGAs[J]. ACM Transactions on Reconfigurable Technology and Systems, 2022, 15(1): 7. doi: 10.1145/3491237.
    [12]
    DUBROVA E. A reconfigurable arbiter PUF with 4 x 4 switch blocks[C]. 2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL), Linz, Austria, 2018: 31–37. doi: 10.1109/ISMVL.2018.00014.
    [13]
    SINGH S, BODAPATI S, PATKAR S, et al. PA-PUF: A novel priority arbiter PUF[C]. 2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC), Patras, Greece, 2022: 1–6. doi: 10.1109/VLSI-SoC54400.2022.9939642.
    [14]
    NI Li, WANG Pengjun, ZHANG Yuejun, et al. SI PUF: An SRAM and inverter-based PUF with a bit error rate of 0.0053% and 0.073/0.042 pJ/bit[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(4): 2339–2343. doi: 10.1109/TCSII.2023.3339296.
    [15]
    YAO Liang, LIANG Huaguo, HUANG Zhengfeng, et al. A lightweight configurable XOR RO-PUF design based on Xilinx FPGA[C]. Proceedings of 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 2021: 83–88. doi: 10.1109/ICET51757.2021.9451016.
    [16]
    RIZK D, RIZK R, RIZK F, et al. An economic uniqueness-improved reliable reconfigurable RO PUF for IoT security[C]. 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, USA, 2022: 1680–1684. doi: 10.1109/ISCAS48785.2022.9937931.
    [17]
    LU Yingchun, WANG Xinyu, WANG Yanjie, et al. Pure digital scalable mixed entropy separation structure for physical unclonable function and true random number generator[J]. IEEE Transactions on Very Large scale Integration (VLSI) Systems, 2021, 29(11): 1922–1929. doi: 10.1109/TVLSI.2021.3116104.
    [18]
    LV Shenglai, HUANG Yangbo, CHEN Lei, et al. RO PUF design in FPGAs with frequency-offsetting strategies[C]. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 2021: 558–562. doi: 10.1109/ICIBA52610.2021.9688287.
    [19]
    WINSTANLEY A and GREENSTREET M. Temporal properties of self-timed rings[C]. Proceedings of the 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods, Scotland, UK, 2001: 140–154. doi: 10.1007/3-540-44798-9_12.
    [20]
    CHERKAOUI A, FISCHER V, AUBERT A, et al. Comparison of self-timed ring and inverter ring oscillators as entropy sources in FPGAS[C]. 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2012: 1325–1330. doi: 10.1109/DATE.2012.6176697.
    [21]
    HUANG Zhengfeng, BIAN Jingchang, LIN Yankun, et al. Design guidelines and feedback structure of ring oscillator PUF for performance improvement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(1): 71–84. doi: 10.1109/TCAD.2023.3301386.
    [22]
    BOKE A K, NAKHATE S, and RAJAWAT A. FPGA implementation of PUF based key generator for secure communication in IoT[J]. Integration, 2023, 89: 241–247. doi: 10.1016/j.vlsi.2022.12.006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (207) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return