Citation: | ZHANG Yuan, LUO Jingru, ZHANG Jiliang. SDL PUF: A High Reliability Self-Adaption Deviation Locking PUF[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2274-2280. doi: 10.11999/JEIT231313 |
[1] |
福布斯: 2016年物联网预测和市场估算总结[EB/OL]. http://tech.163.com/16/1130/07/C73Q381P00097U7R.html, 2016.
|
[2] |
Grand View Research, Inc. IoT security market size worth $9.88 billion By 2025 | CAGR: 29.7%[EB/OL]. https://www.grandviewresearch.com/press-release/global-internet-of-things-iot-security-market, 2018.
|
[3] |
杨庚, 许建, 陈伟, 等. 物联网安全特征与关键技术[J]. 南京邮电大学学报: 自然科学版, 2010, 30(4): 20–29. doi: 10.3969/j.issn.1673-5439.2010.04.004.
YANG Geng, XU Jian, CHEN Wei, et al. Security characteristic and technology in the internet of things[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2010, 30(4): 20–29. doi: 10.3969/j.issn.1673-5439.2010.04.004.
|
[4] |
XU Chongyao, ZHANG Jieyun, LAW M K, et al. Transfer-path-based hardware-reuse strong PUF achieving modeling attack resilience with200 million training CRPs[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2188–2203. doi: 10.1109/TIFS.2023.3263621.
|
[5] |
汪鹏君, 连佳娜, 陈博. 基于序列密码的强PUF抗机器学习攻击方法[J]. 电子与信息学报, 2021, 43(9): 2474–2481. doi: 10.11999/JEIT210726.
WANG Pengjun, LIAN Jiana, and CHEN Bo. Sequence cipher based machine learning-attack resistance method for strong-PUF[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2474–2481. doi: 10.11999/JEIT210726.
|
[6] |
ZHANG Jiliang, SHEN Chaoqun, GUO Zhiyang, et al. CT PUF: Configurable tristate PUF against machine learning attacks for IoT security[J]. IEEE Internet of Things Journal, 2022, 9(16): 14452–14462. doi: 10.1109/JIOT.2021.3090475.
|
[7] |
ZHANG Jiliang, DING Lin, CHEN Zhuojun, et al. DA PUF: Dual-state analog PUF[C]. The 59th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2022: 73–78. doi: 10.1145/3489517.3530412.
|
[8] |
DELLA SALA R and SCOTTI G. A novel FPGA implementation of the NAND-PUF with minimal resource usage and high reliability[J]. Cryptography, 2023, 7(2): 18. doi: 10.3390/cryptography7020018.
|
[9] |
GAN Jiayan, ZHOU Jun, and WANG Ning. A FPGA-based RO PUF with LUT-based self-compare structure and adaptive counter time period tuning[C]. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018: 1–5. doi: 10.1109/ISCAS.2018.8351014.
|
[10] |
DELLA SALA R, BELLIZIA D, and SCOTTI G. A lightweight FPGA compatible weak-PUF primitive based on XOR gates[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(6): 2972–2976. doi: 10.1109/TCSII.2022.3156788.
|
[11] |
STREIT F J, KRÜGER P, BECHER A, et al. Design and evaluation of a tunable PUF architecture for FPGAs[J]. ACM Transactions on Reconfigurable Technology and Systems, 2022, 15(1): 7. doi: 10.1145/3491237.
|
[12] |
DUBROVA E. A reconfigurable arbiter PUF with 4 x 4 switch blocks[C]. 2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL), Linz, Austria, 2018: 31–37. doi: 10.1109/ISMVL.2018.00014.
|
[13] |
SINGH S, BODAPATI S, PATKAR S, et al. PA-PUF: A novel priority arbiter PUF[C]. 2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC), Patras, Greece, 2022: 1–6. doi: 10.1109/VLSI-SoC54400.2022.9939642.
|
[14] |
NI Li, WANG Pengjun, ZHANG Yuejun, et al. SI PUF: An SRAM and inverter-based PUF with a bit error rate of 0.0053% and 0.073/0.042 pJ/bit[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(4): 2339–2343. doi: 10.1109/TCSII.2023.3339296.
|
[15] |
YAO Liang, LIANG Huaguo, HUANG Zhengfeng, et al. A lightweight configurable XOR RO-PUF design based on Xilinx FPGA[C]. Proceedings of 2021 IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 2021: 83–88. doi: 10.1109/ICET51757.2021.9451016.
|
[16] |
RIZK D, RIZK R, RIZK F, et al. An economic uniqueness-improved reliable reconfigurable RO PUF for IoT security[C]. 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, USA, 2022: 1680–1684. doi: 10.1109/ISCAS48785.2022.9937931.
|
[17] |
LU Yingchun, WANG Xinyu, WANG Yanjie, et al. Pure digital scalable mixed entropy separation structure for physical unclonable function and true random number generator[J]. IEEE Transactions on Very Large scale Integration (VLSI) Systems, 2021, 29(11): 1922–1929. doi: 10.1109/TVLSI.2021.3116104.
|
[18] |
LV Shenglai, HUANG Yangbo, CHEN Lei, et al. RO PUF design in FPGAs with frequency-offsetting strategies[C]. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 2021: 558–562. doi: 10.1109/ICIBA52610.2021.9688287.
|
[19] |
WINSTANLEY A and GREENSTREET M. Temporal properties of self-timed rings[C]. Proceedings of the 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and Verification Methods, Scotland, UK, 2001: 140–154. doi: 10.1007/3-540-44798-9_12.
|
[20] |
CHERKAOUI A, FISCHER V, AUBERT A, et al. Comparison of self-timed ring and inverter ring oscillators as entropy sources in FPGAS[C]. 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2012: 1325–1330. doi: 10.1109/DATE.2012.6176697.
|
[21] |
HUANG Zhengfeng, BIAN Jingchang, LIN Yankun, et al. Design guidelines and feedback structure of ring oscillator PUF for performance improvement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(1): 71–84. doi: 10.1109/TCAD.2023.3301386.
|
[22] |
BOKE A K, NAKHATE S, and RAJAWAT A. FPGA implementation of PUF based key generator for secure communication in IoT[J]. Integration, 2023, 89: 241–247. doi: 10.1016/j.vlsi.2022.12.006.
|