Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
LI Yan, HU Yueming, ZENG Xiaoyang. Cost-Effective TMR Soft Error Tolerance Technique for Commercial Aerospace: Utilization of Approximate Computing[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1604-1612. doi: 10.11999/JEIT231288
Citation: LI Yan, HU Yueming, ZENG Xiaoyang. Cost-Effective TMR Soft Error Tolerance Technique for Commercial Aerospace: Utilization of Approximate Computing[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1604-1612. doi: 10.11999/JEIT231288

Cost-Effective TMR Soft Error Tolerance Technique for Commercial Aerospace: Utilization of Approximate Computing

doi: 10.11999/JEIT231288
Funds:  The National Natural Science Foundation of China (62204045), Shanghai Pujiang Program (22PJD005)
  • Received Date: 2023-11-21
  • Rev Recd Date: 2024-04-08
  • Available Online: 2024-05-07
  • Publish Date: 2024-05-30
  • Triple Modular Redundancy (TMR), as the most prevalent and effective technique for soft error mitigation technique, inevitably incurs substantial hardware overhead while meeting high fault-tolerance requirements. To achieve the trade-off between area, power and fault coverage and meet the requirement of low-cost and high-reliability circuit design, Approximate Triple Modular Redundancy (ATMR) is investigated and a Dynamic Adjustment Multi-Objective Optimization Framework based on Approximate Gate Library (ApxLib+DAMOO) is investigated. The basic optimization framework employs Non-dominated Sorting Genetic Algorithm II (NSGA-II), achieving rapidly approximation through parity analysis and the pre-established ApxLib. Subsequently, the framework introduces two novel mechanisms: dynamic probability adjustment and parity expansion. The first mechanism dynamically updates the mutation probability of gates in the genetic algorithm based on testability analysis, while the second mechanism performs recognition and reconstruction for binate gates to achieve dual optimization of efficiency and effectiveness in optimization. Experimental results indicate that the proposed optimization framework achieves an additional Soft Error Rate (SER) reduction of up to 10%~20% compared to traditional NSGA-II with the same hardware overhead, while reducing 18.7% of execution time reduction averagely.
  • loading
  • [1]
    LI Yan, CHEN Chao, CHENG Xu, et al. DMBF: Design metrics balancing framework for soft-error-tolerant digital circuits through bayesian optimization[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(10): 4015–4027. doi: 10.1109/TCSI.2023.3302341.
    [2]
    PHILIP A S and SREEKALA K S. The ramification of single event transient effect on efficient charge recovery logic circuit[C]. 2022 International Conference on Innovative Trends in Information Technology, Kottayam, India, 2022: 1–4. doi: 10.1109/ICITIIT54346.2022.9744208.
    [3]
    CHEN Z F, LAI Yusheng, HUANG Chengming, et al. Process and simulation design of Silicon-on-Insulator (SOI) NMOS[C]. 2023 IEEE Nanotechnology Materials and Devices Conference, Paestum, Italy, 2023: 313–317. doi: 10.1109/NMDC57951.2023.10344290.
    [4]
    YUE Hengshan, WEI Xiaohui, TAN Jingweijia, et al. Eff-ECC: Protecting GPGPUs register file with a unified energy-efficient ECC mechanism[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(7): 2080–2093. doi: 10.1109/TCAD.2021.3104529.
    [5]
    ZHOU Quming and MOHANRAM K. Gate sizing to radiation harden combinational logic[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2006, 25(1): 155–166. doi: 10.1109/TCAD.2005.853696.
    [6]
    YAN Aibin, FAN Zhengzheng, DING Liang, et al. Cost-effective and highly reliable circuit-components design for safety-critical applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 517–529. doi: 10.1109/TAES.2021.3103586.
    [7]
    CHEN Ke, LIU Weiqiang, and LOMBARDI F. Approximate arithmetic circuits: Design and applications[M]. LIU Weiqiang and LOMBARDI F. Approximate Computing[M]. Cham: Springer, 2022: 3–21. doi: 10.1007/978-3-030-98347-5_1.
    [8]
    NARASIMHAM B, LUK H, PAONE C, et al. Scaling trends and the effect of process variations on the soft error rate of advanced FinFET SRAMs[C]. 2023 IEEE International Reliability Physics Symposium, Monterey, USA, 2023: 1–4. doi: 10.1109/IRPS48203.2023.10118025.
    [9]
    GOMES I A C, MARTINS M G A, REIS A I, et al. Exploring the use of approximate TMR to mask transient faults in logic with low area overhead[J]. Microelectronics Reliability, 2015, 55(9/10): 2072–2076. doi: 10.1016/j.microrel.2015.06.125.
    [10]
    SIERAWSKI B D, BHUVA B L, and MASSENGILL L W. Reducing soft error rate in logic circuits through approximate logic function[J]. IEEE Transactions on Nuclear Science, 2006, 53(6): 3417–3421. doi: 10.1109/TNS.2006.884352.
    [11]
    ARIFEEN T, HASSAN A S, and LEE J A. Approximate triple modular redundancy: A survey[J]. IEEE Access, 2020, 8: 139851–139867. doi: 10.1109/ACCESS.2020.3012673.
    [12]
    GOMES I A C, MARTINS M, KASTENSMIDT F L, et al. Methodology for achieving best trade-off of area and fault masking coverage in ATMR[C]. The 15th Latin American Test Workshop - LATW, Fortaleza, Brazil, 2014: 1–6. doi: 10.1109/LATW.2014.6841916.
    [13]
    ARIFEEN T, HASSAN A S, MORADIAN H, et al. Probing approximate TMR in error resilient applications for better design tradeoffs[C]. 2016 Euromicro Conference on Digital System Design, Limassol, Cyprus, 2016: 637–640. doi: 10.1109/DSD.2016.57.
    [14]
    ALBANDES I, SERRANO-CASES A, SÁNCHEZ-CLEMENTE A J, et al. Improving approximate-TMR using multi-objective optimization genetic algorithm[C]. The IEEE 19th Latin-American Test Symposium, Sao Paulo, Brazil, 2018: 1–6. doi: 10.1109/LATW.2018.8349665.
    [15]
    SÁNCHEZ-CLEMENTE A, ENTRENA L, and GARCÍA-VALDERAS M. Error masking with approximate logic circuits using dynamic probability estimations[C]. 2014 IEEE 20th International On-Line Testing Symposium, Platja d’Aro, Spain, 2014: 134–139. doi: 10.1109/IOLTS.2014.6873685.
    [16]
    VERMA S, PANT M, and SNASEL V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE Access, 2021, 9: 57757–57791. doi: 10.1109/ACCESS.2021.3070634.
    [17]
    ALBANDES I, MARTINS M, CUENCA-ASENSI S, et al. Building ATMR circuits using approximate library and heuristic approaches[J]. Microelectronics Reliability, 2019, 97: 24–30. doi: 10.1016/j.microrel.2019.04.002.
    [18]
    BRGLEZ F. On testability analysis of combinational networks[J]. IEEE International Symposium on Circuits and Systems, 1984, 1984(1): 221–225.
    [19]
    MANSKE G B, FARIAS C R, BUTZEN P F, et al. A fast approximate function generation method to ATMR architecture[C]. 2022 IEEE 13th Latin America Symposium on Circuits and System, Puerto Varas, Chile, 2022: 1–4. doi: 10.1109/LASCAS53948.2022.9789047.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (364) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return