Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
XU Shaoping, ZHOU Changfei, XIAO Jian, TAO Wuyong, DAI TianYu. A Fusion Network for Infrared and Visible Images Based on Pre-trained Fixed Parameters and Deep Feature Modulation[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3305-3313. doi: 10.11999/JEIT231283
Citation: XU Shaoping, ZHOU Changfei, XIAO Jian, TAO Wuyong, DAI TianYu. A Fusion Network for Infrared and Visible Images Based on Pre-trained Fixed Parameters and Deep Feature Modulation[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3305-3313. doi: 10.11999/JEIT231283

A Fusion Network for Infrared and Visible Images Based on Pre-trained Fixed Parameters and Deep Feature Modulation

doi: 10.11999/JEIT231283 cstr: 32379.14.JEIT231283
Funds:  The National Natural Science Foundation of China (62162043)
  • Received Date: 2023-11-20
  • Rev Recd Date: 2024-03-15
  • Available Online: 2024-03-26
  • Publish Date: 2024-08-30
  • To better leverage complementary image information from infrared and visible light images and generate fused images that align with human perception characteristics, a two-stage training strategy is proposed to obtain a novel infrared-visible image fusion Network based on pre-trained fixed Parameters and Deep feature modulation (PDNet). Specifically, in the self-supervised pre-training stage, a substantial dataset of clear natural images is employed as both inputs and outputs for the UNet backbone network, and pre-training is accomplished with autoencoder technology. As such, the resulting encoder module can proficiently extract multi-scale depth features from the input image, while the decoder module can faithfully reconstruct it into an output image with minimal deviation from the input. In the unsupervised fusion training stage, the pre-trained encoder and decoder module parameters remain fixed, and a fusion module featuring a Transformer structure is introduced between them. Within the Transformer structure, the multi-head self-attention mechanism allocates deep feature weights, extracted by the encoder from both infrared and visible light images, in a rational manner. This process fuses and modulates the deep image features at various scales into the manifold space of deep features of clear natural image, thereby ensuring the visual perception quality of the fused image after reconstruction by the decoder. Extensive experimental results demonstrate that, in comparison to current mainstream fusion models (algorithms), the proposed PDNet model exhibits substantial advantages across various objective evaluation metrics. Furthermore, in subjective visual evaluations, it aligns more closely with human visual perception characteristics.
  • loading
  • [1]
    CHANG Zhihao, FENG Zhixi, YANG Shuyuan, et al. AFT: Adaptive fusion transformer for visible and infrared images[J]. IEEE Transactions on Image Processing, 2023, 32: 2077–2092. doi: 10.1109/TIP.2023.3263113.
    [2]
    WU Xin, HONG Danfeng, and CHANUSSOT J. UIU-Net: U-Net in U-Net for infrared small object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 364–376. doi: 10.1109/TIP.2022.3228497.
    [3]
    TANG Linfeng, YUAN Jiteng, ZHANG Hao, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83/84: 79–92. doi: 10.1016/j.inffus.2022.03.007.
    [4]
    冯鑫, 张建华, 胡开群, 等. 基于变分多尺度的红外与可见光图像融合[J]. 电子学报, 2018, 46(3): 680–687. doi: 10.3969/j.issn.0372-2112.2018.03.025.

    FENG Xin, ZHANG Jianhua, HU Kaiqun, et al. The infrared and visible image fusion method based on variational multiscale[J]. Acta Electronica Sinica, 2018, 46(3): 680–687. doi: 10.3969/j.issn.0372-2112.2018.03.025.
    [5]
    RAM PRABHAKAR K, SAI SRIKAR V, and BABU R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4714–4722. doi: 10.1109/ICCV.2017.505.
    [6]
    LI Hui and WU Xiaojun. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614–2623. doi: 10.1109/TIP.2018.2887342.
    [7]
    ZHANG Hao, XU Han, XIAO Yang, et al. Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity[C]. The Thirty-Seventh AAAI Conference on Artificial Intelligence, Washington, USA, 2020: 12797–12804. doi: 10.1609/AAAI.V34I07.6975.
    [8]
    MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11–26. doi: 10.1016/j.inffus.2018.09.004.
    [9]
    MA Jiayi, XU Han, JIANG Junjun, et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980–4995. doi: 10.1109/TIP.2020.2977573.
    [10]
    LI Jing, HUO Hongtao, LI Chang, et al. AttentionFGAN: Infrared and visible image fusion using attention-based generative adversarial networks[J]. IEEE Transactions on Multimedia, 2021, 23: 1383–1396. doi: 10.1109/TMM.2020.2997127.
    [11]
    XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502–518. doi: 10.1109/TPAMI.2020.3012548.
    [12]
    LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: Image restoration using swin transformer[C]. The 2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1833–1844. doi: 10.1109/ICCVW54120.2021.00210.
    [13]
    RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [14]
    WEI Yanyan, ZHANG Zhao, WANG Yang, et al. DerainCycleGAN: Rain attentive cycleGAN for single image deraining and rainmaking[J]. IEEE Transactions on Image Processing, 2021, 30: 4788–4801. doi: 10.1109/TIP.2021.3074804.
    [15]
    ZHANG Yuyang, XU Shibiao, WU Baoyuan, et al. Unsupervised multi-view constrained convolutional network for accurate depth estimation[J]. IEEE Transactions on Image Processing, 2020, 29: 7019–7031. doi: 10.1109/TIP.2020.2997247.
    [16]
    KRISTAN M, LEONARDIS A, MATAS J, et al. The eighth visual object tracking VOT2020 challenge results[C]. European Conference on Computer Vision, Glasgow, UK, 2020: 547–601. doi: 10.1007/978-3-030-68238-5_39.
    [17]
    MA Jiayi, CHEN Chen, LI Chang, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100–109. doi: 10.1016/j.inffus.2016.02.001.
    [18]
    LIU Yu, CHEN Xun, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882–1886. doi: 10.1109/LSP.2016.2618776.
    [19]
    KUMAR B K S. Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform[J]. Signal, Image and Video Processing, 2013, 7(6): 1125–1143. doi: 10.1007/s11760-012-0361-x.
    [20]
    MA Jiayi, TANG Linfeng, XU Meilong, et al. STDFusionNet: An infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1–13. doi: 10.1109/TIM.2021.3075747.
    [21]
    LIU Jinyuan, FAN Xin, HUANG Zhanbo, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 5792–5801. doi: 10.1109/CVPR52688.2022.00571.
    [22]
    HUANG Zhanbo, LIU Jinyuan, FAN Xin, et al. ReCoNet: Recurrent correction network for fast and efficient multi-modality image fusion[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 539–555. doi: 10.1007/978-3-031-19797-0_31.
    [23]
    TANG Wei, HE Fazhi, and LIU Yu. YDTR: Infrared and visible image fusion via Y-shape dynamic transformer[J]. IEEE Transactions on Multimedia, 2023, 25: 5413–5428. doi: 10.1109/TMM.2022.3192661.
    [24]
    TANG Wei, HE Fazhi, LIU Yu, et al. DATFuse: Infrared and visible image fusion via dual attention transformer[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(7): 3159–3172. doi: 10.1109/TCSVT.2023.3234340.
    [25]
    蔺素珍, 韩泽. 基于深度堆叠卷积神经网络的图像融合[J]. 计算机学报, 2017, 40(11): 2506–2518. doi: 10.11897/SP.J.1016.2017.02506.

    LIN Suzhen and HAN Ze. Images fusion based on deep stack convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(11): 2506–2518. doi: 10.11897/SP.J.1016.2017.02506.
    [26]
    SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430–444. doi: 10.1109/TIP.2005.859378.
    [27]
    ASLANTAS V and BENDES E. A new image quality metric for image fusion: The sum of the correlations of differences[J]. AEU-International Journal of Electronics and Communications, 2015, 69(12): 1890–1896. doi: 10.1016/j.aeue.2015.09.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (251) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return