Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Haitao ZHAO, Huiling CHENG, Yi DING, Hui ZHANG, Hongbo ZHU. Research on Traffic Accident Risk Prediction Algorithm of Edge Internet of Vehicles Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(1): 50-57. doi: 10.11999/JEIT190595
Citation: PAN Jinwei, WANG Yiqiao, ZHONG Bo, WANG Xiaoling. Statistical Feature-based Search for Multivariate Time Series Forecasting[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3276-3284. doi: 10.11999/JEIT231264

Statistical Feature-based Search for Multivariate Time Series Forecasting

doi: 10.11999/JEIT231264 cstr: 32379.14.JEIT231264
Funds:  The National Natural Science Foundation of China (61972155)
  • Received Date: 2023-11-15
  • Rev Recd Date: 2024-07-14
  • Available Online: 2024-07-29
  • Publish Date: 2024-08-30
  • There are long-term dependencies, such as trends, seasonality, and periodicity in time series, which may span several months. It is insufficient to apply existing methods in modeling the long-term dependencies of the series explicitly. To address this issue, this paper proposes a Statistical Feature-based Search for multivariate time series Forecasting (SFSF). First, statistical features which include smoothing, variance, and interval standardization are extracted from multivariate time series to enhance the perception of the time series’ trends and periodicity. Next, statistical features are used to search for similar series in historical sequences. The current and historical sequence information is then blended using attention mechanisms to produce accurate prediction results. Experimental results show that the SFSF method outperforms six state-of-the-art methods.
  • [1]
    ORESHKIN B N, CARPOV D, CHAPADOS N, et al. N-Beats: Neural basis expansion analysis for interpretable time series forecasting[C]. International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020: 1–31.
    [2]
    SALINAS D, FLUNKERT V, GASTHAUS J, et al. DeepAR: Probabilistic forecasting with autoregressive recurrent networks[J]. International Journal of Forecasting, 2020, 36(3): 1181–1191. doi: 10.1016/j.ijforecast.2019.07.001.
    [3]
    BAI Shaojie, KOLTER J Z, and KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. https://arxiv.org/abs/1803.01271, 2018.
    [4]
    LAI Guokun, CHANG Weicheng, YANG Yiming, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]. The 41st international ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, USA, 2018: 95–104. doi: 10.1145/3209978.3210006.
    [5]
    ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57–81. doi: 10.1016/j.aiopen.2021.01.001.
    [6]
    WU Zonghan, PAN Shirui, LONG Guodong, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]. The 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 753–763. doi: 10.1145/3394486.3403118.
    [7]
    SHAO Zezhi, ZHANG Zhao, WANG Fei, et al. Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting[C]. The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, USA, 2022: 1567–1577.
    [8]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [9]
    YUAN Li, CHEN Yunpeng, WANG Tao, et al. Tokens-to-token ViT: Training vision transformers from scratch on imageNet[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 538–547. doi: 10.1109/ICCV48922.2021.00060.
    [10]
    HUANG Siteng, WANG Donglin, WU Xuehan, et al. DSANet: Dual self-attention network for multivariate time series forecasting[C]. The 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 2019: 2129–2132. doi: 10.1145/3357384.3358132.
    [11]
    LI Shiyang, JIN Xiaoyong, XUAN Yao, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019, 32: 471.
    [12]
    ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]. The 35th AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 11106–11115. doi: 10.1609/aaai.v35i12.17325.
    [13]
    WU Haixu, XU Jiehui, WANG Jianmin, et al. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting[C]. The 35th International Conference on Neural Information Processing Systems, Red Hook, USA, 2021: 1717.
    [14]
    ZHOU Tian, MA Ziqing, WEN Qingsong, et al. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting[C]. International Conference on Machine Learning, Baltimore, USA, 2022: 27268–27286.
    [15]
    LIU Shizhan, YU Hang, LIAO Cong, et al. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting[C]. The Tenth International Conference on Learning Representations, Vienna, Austria, 2022: 1–20.
    [16]
    YUE Zhihan, WANG Yujing, DUAN Juanyong, et al. TS2Vec: Towards universal representation of time series[C]. The 36th AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2022: 8980–8987. doi: 10.1609/aaai.v36i8.20881.
    [17]
    ZENG Ailing, CHEN Muxi, ZHANG Lei, et al. Are transformers effective for time series forecasting?[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 11121–11128. doi: 10.1609/aaai.v37i9.26317.
  • Cited by

    Periodical cited type(25)

    1. 胡紫睿,刘倩. 基于区域生长的肝影像分割系统的设计与研究. 黑龙江科学. 2024(06): 88-92 .
    2. 刘浩然,张力悦,苏昭玉,张赟,张磊. 最大期望模拟退火的贝叶斯变分推理算法. 电子与信息学报. 2021(07): 2046-2054 . 本站查看
    3. 王丽红,胡长宏,范鲜红,高春歌,张晓峻,孙晶华. 自适应中值滤波器优化及其FPGA实现. 哈尔滨理工大学学报. 2021(05): 68-75 .
    4. 孙巧妍,陈祥光,刘美娜,孙玉梅,辛斌杰. 基于毛羽补偿与自适应中值滤波的纱线主体图像识别算法. 纺织学报. 2019(01): 62-66+72 .
    5. 杨健,陈建明,李清华. 一种改进SVG医用电力无功补偿装置. 电力电容器与无功补偿. 2017(04): 130-134 .
    6. 张辉,金侠挺. 基于机器视觉的新能源电动车充电孔检测与定位方法. 测控技术. 2017(02): 9-14+19 .
    7. 张嵘. 基于Matlab平台的遥感图像变化检测算法改进策略. 测绘通报. 2016(07): 84-89 .
    8. 黄立慧,陈海霞. 基于方向梯度计算的图像椒盐噪声滤除算法. 福建电脑. 2016(06): 108-110 .
    9. 董春,孙力,全庆霄. 一种改进的激光打印图像预处理方法. 电子设计工程. 2016(24): 176-179 .
    10. 伍文源,曾水玲,蒋天保. 湘西方块苗文图像的预处理方法. 吉首大学学报(自然科学版). 2016(03): 24-27 .
    11. 胡义坦,曹杰,刘伟. 无人机视觉着陆中的图像去噪算法. 计算机应用研究. 2016(02): 629-631 .
    12. 张辉,金侠挺. 基于曲率滤波和反向P-M电动车充电孔检测方法. 仪器仪表学报. 2016(07): 1626-1638 .
    13. 陈晓,唐诗华. 改进的中值滤波在图像去噪中的应用. 地理空间信息. 2015(06): 77-78+13 .
    14. 王贵君,杨永强. 基于高概率椒盐噪声的模糊滤波器在图像恢复中的算法设计. 电子学报. 2015(01): 24-29 .
    15. 赵君爱,魏艳春. 基于改进中值滤波的图像噪声去除算法的研究. 浙江农业学报. 2015(06): 1078-1082 .
    16. 李楠,张为. 基于提升小波变换的薯类视觉图像滤波处理. 江苏农业科学. 2014(01): 376-378 .
    17. 程东旭,杨艳. 基于自适应耦合PDE模型的车牌图像去噪研究. 计算机测量与控制. 2014(08): 2592-2594 .
    18. 徐晓东,李培林,炊明伟,王崴,冯有前. 一种针对图像脉冲噪声的改进中值滤波算法. 电视技术. 2013(19): 61-63+150 .
    19. 陈健,郑绍华,余轮,潘林. 基于方向的多阈值自适应中值滤波改进算法. 电子测量与仪器学报. 2013(02): 156-161 .
    20. 刘国军,马月梅. 混合波原子和双边滤波的纹理图像滤波方法. 计算机应用研究. 2013(03): 942-945+949 .
    21. 毛清华,马宏伟,张旭辉. 煤矿钢芯输送带缺陷信号小波降噪研究. 煤矿机械. 2013(09): 69-71 .
    22. 孙永生,刘大健,秦蒙. 多幅图像中值法在滤除噪声中的应用. 电视技术. 2012(23): 15-17+72 .
    23. 王冰野. 用改进的自适应中值滤波去椒盐噪声. 湖北警官学院学报. 2012(08): 156-157 .
    24. 朱士虎,黄智. 一种新的高密度椒盐噪声滤波算法. 计算机工程. 2012(18): 207-210 .
    25. 王小兵,孙久运,汤海燕. 一种基于数学形态学与小波域增强的滤波算法. 微电子学与计算机. 2012(07): 64-67 .

    Other cited types(28)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(8)

    Article Metrics

    Article views (317) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return