Citation: | PAN Jinwei, WANG Yiqiao, ZHONG Bo, WANG Xiaoling. Statistical Feature-based Search for Multivariate Time Series Forecasting[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3276-3284. doi: 10.11999/JEIT231264 |
[1] |
ORESHKIN B N, CARPOV D, CHAPADOS N, et al. N-Beats: Neural basis expansion analysis for interpretable time series forecasting[C]. International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020: 1–31.
|
[2] |
SALINAS D, FLUNKERT V, GASTHAUS J, et al. DeepAR: Probabilistic forecasting with autoregressive recurrent networks[J]. International Journal of Forecasting, 2020, 36(3): 1181–1191. doi: 10.1016/j.ijforecast.2019.07.001.
|
[3] |
BAI Shaojie, KOLTER J Z, and KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. https://arxiv.org/abs/1803.01271, 2018.
|
[4] |
LAI Guokun, CHANG Weicheng, YANG Yiming, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]. The 41st international ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, USA, 2018: 95–104. doi: 10.1145/3209978.3210006.
|
[5] |
ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57–81. doi: 10.1016/j.aiopen.2021.01.001.
|
[6] |
WU Zonghan, PAN Shirui, LONG Guodong, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]. The 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 753–763. doi: 10.1145/3394486.3403118.
|
[7] |
SHAO Zezhi, ZHANG Zhao, WANG Fei, et al. Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting[C]. The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, USA, 2022: 1567–1577.
|
[8] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[9] |
YUAN Li, CHEN Yunpeng, WANG Tao, et al. Tokens-to-token ViT: Training vision transformers from scratch on imageNet[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 538–547. doi: 10.1109/ICCV48922.2021.00060.
|
[10] |
HUANG Siteng, WANG Donglin, WU Xuehan, et al. DSANet: Dual self-attention network for multivariate time series forecasting[C]. The 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 2019: 2129–2132. doi: 10.1145/3357384.3358132.
|
[11] |
LI Shiyang, JIN Xiaoyong, XUAN Yao, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019, 32: 471.
|
[12] |
ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]. The 35th AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 11106–11115. doi: 10.1609/aaai.v35i12.17325.
|
[13] |
WU Haixu, XU Jiehui, WANG Jianmin, et al. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting[C]. The 35th International Conference on Neural Information Processing Systems, Red Hook, USA, 2021: 1717.
|
[14] |
ZHOU Tian, MA Ziqing, WEN Qingsong, et al. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting[C]. International Conference on Machine Learning, Baltimore, USA, 2022: 27268–27286.
|
[15] |
LIU Shizhan, YU Hang, LIAO Cong, et al. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting[C]. The Tenth International Conference on Learning Representations, Vienna, Austria, 2022: 1–20.
|
[16] |
YUE Zhihan, WANG Yujing, DUAN Juanyong, et al. TS2Vec: Towards universal representation of time series[C]. The 36th AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2022: 8980–8987. doi: 10.1609/aaai.v36i8.20881.
|
[17] |
ZENG Ailing, CHEN Muxi, ZHANG Lei, et al. Are transformers effective for time series forecasting?[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 11121–11128. doi: 10.1609/aaai.v37i9.26317.
|
1. | 胡紫睿,刘倩. 基于区域生长的肝影像分割系统的设计与研究. 黑龙江科学. 2024(06): 88-92 . ![]() | |
2. | 刘浩然,张力悦,苏昭玉,张赟,张磊. 最大期望模拟退火的贝叶斯变分推理算法. 电子与信息学报. 2021(07): 2046-2054 . ![]() | |
3. | 王丽红,胡长宏,范鲜红,高春歌,张晓峻,孙晶华. 自适应中值滤波器优化及其FPGA实现. 哈尔滨理工大学学报. 2021(05): 68-75 . ![]() | |
4. | 孙巧妍,陈祥光,刘美娜,孙玉梅,辛斌杰. 基于毛羽补偿与自适应中值滤波的纱线主体图像识别算法. 纺织学报. 2019(01): 62-66+72 . ![]() | |
5. | 杨健,陈建明,李清华. 一种改进SVG医用电力无功补偿装置. 电力电容器与无功补偿. 2017(04): 130-134 . ![]() | |
6. | 张辉,金侠挺. 基于机器视觉的新能源电动车充电孔检测与定位方法. 测控技术. 2017(02): 9-14+19 . ![]() | |
7. | 张嵘. 基于Matlab平台的遥感图像变化检测算法改进策略. 测绘通报. 2016(07): 84-89 . ![]() | |
8. | 黄立慧,陈海霞. 基于方向梯度计算的图像椒盐噪声滤除算法. 福建电脑. 2016(06): 108-110 . ![]() | |
9. | 董春,孙力,全庆霄. 一种改进的激光打印图像预处理方法. 电子设计工程. 2016(24): 176-179 . ![]() | |
10. | 伍文源,曾水玲,蒋天保. 湘西方块苗文图像的预处理方法. 吉首大学学报(自然科学版). 2016(03): 24-27 . ![]() | |
11. | 胡义坦,曹杰,刘伟. 无人机视觉着陆中的图像去噪算法. 计算机应用研究. 2016(02): 629-631 . ![]() | |
12. | 张辉,金侠挺. 基于曲率滤波和反向P-M电动车充电孔检测方法. 仪器仪表学报. 2016(07): 1626-1638 . ![]() | |
13. | 陈晓,唐诗华. 改进的中值滤波在图像去噪中的应用. 地理空间信息. 2015(06): 77-78+13 . ![]() | |
14. | 王贵君,杨永强. 基于高概率椒盐噪声的模糊滤波器在图像恢复中的算法设计. 电子学报. 2015(01): 24-29 . ![]() | |
15. | 赵君爱,魏艳春. 基于改进中值滤波的图像噪声去除算法的研究. 浙江农业学报. 2015(06): 1078-1082 . ![]() | |
16. | 李楠,张为. 基于提升小波变换的薯类视觉图像滤波处理. 江苏农业科学. 2014(01): 376-378 . ![]() | |
17. | 程东旭,杨艳. 基于自适应耦合PDE模型的车牌图像去噪研究. 计算机测量与控制. 2014(08): 2592-2594 . ![]() | |
18. | 徐晓东,李培林,炊明伟,王崴,冯有前. 一种针对图像脉冲噪声的改进中值滤波算法. 电视技术. 2013(19): 61-63+150 . ![]() | |
19. | 陈健,郑绍华,余轮,潘林. 基于方向的多阈值自适应中值滤波改进算法. 电子测量与仪器学报. 2013(02): 156-161 . ![]() | |
20. | 刘国军,马月梅. 混合波原子和双边滤波的纹理图像滤波方法. 计算机应用研究. 2013(03): 942-945+949 . ![]() | |
21. | 毛清华,马宏伟,张旭辉. 煤矿钢芯输送带缺陷信号小波降噪研究. 煤矿机械. 2013(09): 69-71 . ![]() | |
22. | 孙永生,刘大健,秦蒙. 多幅图像中值法在滤除噪声中的应用. 电视技术. 2012(23): 15-17+72 . ![]() | |
23. | 王冰野. 用改进的自适应中值滤波去椒盐噪声. 湖北警官学院学报. 2012(08): 156-157 . ![]() | |
24. | 朱士虎,黄智. 一种新的高密度椒盐噪声滤波算法. 计算机工程. 2012(18): 207-210 . ![]() | |
25. | 王小兵,孙久运,汤海燕. 一种基于数学形态学与小波域增强的滤波算法. 微电子学与计算机. 2012(07): 64-67 . ![]() |