Citation: | REN Kun, LI Zhengzhen, GUI Yuanze, FAN Chunqi, LUAN Heng. Super-Resolution Inpainting of Low-resolution Randomly Occluded Face Images[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3343-3352. doi: 10.11999/JEIT231262 |
[1] |
刘颖, 张艺轩, 佘建初, 等. 人脸去遮挡新技术研究综述[J]. 计算机科学与探索, 2021, 15(10): 1773–1794. doi: 10.3778/j.issn.1673-9418.2103092.
LIU Ying, ZHANG Yixuan, SHE Jianchu, et al. Review of new face occlusion inpainting technology research[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1773–1794. doi: 10.3778/j.issn.1673-9418.2103092.
|
[2] |
卢启萌, 毛晓, 凌嵘, 等. 口罩佩戴对人像鉴定的影响[J]. 中国司法鉴定, 2021(5): 89–94. doi: 10.3969/j.issn.1671-2072.2021.05.010.
LU Qimeng, MAO Xiao, LING Rong, et al. Influence of mask wearing on identification of human images[J]. Chinese Journal of Forensic Sciences, 2021(5): 89–94. doi: 10.3969/j.issn.1671-2072.2021.05.010.
|
[3] |
廖海斌, 陈友斌, 陈庆虎. 基于非局部相似字典学习的人脸超分辨率与识别[J]. 武汉大学学报:信息科学版, 2016, 41(10): 1414–1420. doi: 10.13203/j.whugis20140498.
LIAO Haibin, CHEN Youbin, and CHEN Qinghu. Non-local similarity dictionary learning based super-resolution for improved face recognition[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1414–1420. doi: 10.13203/j.whugis20140498.
|
[4] |
王山豹, 梁栋, 沈玲. 利用多模态注意力机制生成网络的图像修复[J]. 计算机辅助设计与图形学学报, 2023, 35(7): 1109–1121. doi: 10.3724/SP.J.1089.2023.19578.
WANG Shanbao, LIANG Dong, and SHEN Ling. Image inpainting with multi-modal attention mechanism generative networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(7): 1109–1121. doi: 10.3724/SP.J.1089.2023.19578.
|
[5] |
张子迎, 周华. 强化结构的数字壁画病害修复算法研究[J]. 系统仿真学报, 2022, 34(7): 1524–1531. doi: 10.16182/j.issn1004731x. joss.21-0034.
ZHANG Ziying and ZHOU Hua. Research on inpainting algorithm of digital murals based on enhanced structural information[J]. Journal of System Simulation, 2022, 34(7): 1524–1531. doi: 10.16182/j.issn1004731x.joss.21-0034.
|
[6] |
BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: A randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3): 24. doi: 10.1145/1531326.1531330.
|
[7] |
BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting[C]. The 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, USA, 2000: 417–424. doi: 10.1145/344779.344972.
|
[8] |
ESEDOGLU S and SHEN Jianhong. Digital inpainting based on the Mumford–Shah–Euler image model[J]. European Journal of Applied Mathematics, 2002, 13(4): 353–370. doi: 10.1017/S0956792502004904.
|
[9] |
YU Jiahui, LIN Zhe, YANG Jimei, et al. Generative image inpainting with contextual attention[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5505–5514. doi: 10.1109/CVPR.2018.00577.
|
[10] |
NAZERI K, NG E, JOSEPH T, et al. EdgeConnect: Generative image inpainting with adversarial edge learning[J]. arXiv preprint arXiv: 1901.00212, 2019.
|
[11] |
LI Wenbo, LIN Zhe, ZHOU Kun, et al. MAT: Mask-aware transformer for large hole image inpainting[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10758–10768. doi: 10.1109/CVPR52688.2022.01049.
|
[12] |
ZENG Yanhong, FU Jianlong, CHAO Hongyang, et al. Aggregated contextual transformations for high-resolution image inpainting[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(7): 3266–3280. doi: 10.1109/TVCG.2022.3156949.
|
[13] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montréal, Canada, 2014: 1384–1393.
|
[14] |
GUO Yong, CHEN Jian, WANG Jingdong, et al. Closed-loop matters: Dual regression networks for single image super-resolution[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 5407–5416. doi: 10.1109/CVPR42600.2020.00545.
|
[15] |
MEI Yiqun, FAN Yuchen, ZHANG Yulun, et al. Pyramid attention network for image restoration[J]. International Journal of Computer Vision, 2023, 131(12): 3207–3225. doi: 10.1007/s11263-023-01843-5.
|
[16] |
汪荣贵, 雷辉, 杨娟, 等. 基于自相似特征增强网络结构的图像超分辨率重建[J]. 光电工程, 2022, 49(5): 210382. doi: 10.12086/oee.2022.210382.
WANG Ronggui, LEI Hui, YANG Juan, et al. Self-similarity enhancement network for image super-resolution[J]. Opto-Electronic Engineering, 2022, 49(5): 210382. doi: 10.12086/oee.2022.210382.
|
[17] |
黄友文, 唐欣, 周斌. 结合双注意力和结构相似度量的图像超分辨率重建网络[J]. 液晶与显示, 2022, 37(3): 367–375. doi: 10.37188/CJLCD.2021-0178.
HUANG Youwen, TANG Xin, and ZHOU Bin. Image super-resolution reconstruction network with dual attention and structural similarity measure[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 367–375. doi: 10.37188/CJLCD.2021-0178.
|
[18] |
CHEN Xiangyu, WANG Xintao, ZHOU Jiantao, et al. Activating more pixels in image super-resolution transformer[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 22367–22377. doi: 10.1109/CVPR52729.2023.02142.
|
[19] |
LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: Image restoration using swin transformer[C]. 2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1833–1844. doi: 10.1109/ICCVW54120.2021.00210.
|
[20] |
ARJOVSKY M, CHINTALA S, and BOTTOU L. Wasserstein GAN[J]. arXiv preprint arXiv: 1701.07875, 2017.
|
[21] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5767–5777.
|
[22] |
MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[J]. arXiv preprint arXiv: 1802.05957, 2018.
|
[23] |
ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1125–1134. doi: 10.1109/CVPR.2017.632.
|
[24] |
JOHNSON J, ALAHI A, and FEI-FEI L. Perceptual losses for real-time style transfer and super-resolution[C]. The 14th European Conference on Computer Vision, Amsterdam, the Netherlands, 2016: 694–711. doi: 10.1007/978-3-319-46475-6_43.
|
[25] |
LIU Guilin, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 85–100. doi: 10.1007/978-3-030-01252-6_6.
|