Citation: | WANG Xu, CHEN Ke, YAN Chenggang, WANG Chenghua, LIU Weiqiang. Progress in The Application and Research of Approximate Computation Techniques Oriented to The Field of Digital Signal Processing[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1843-1852. doi: 10.11999/JEIT231245 |
[1] |
LIU Weiqiang and LOMBARDI F. Approximate Computing[M]. Cham: Springer, 2022: 365–368. doi: 10.1007/978-3-030-98347-5.
|
[2] |
LIU Weiqiang, LOMBARDI F, and SCHULTE M. Approximate computing: From circuits to applications[J]. Proceedings of the IEEE, 2020, 108(12): 2103–2107. doi: 10.1109/JPROC.2020.3033361.
|
[3] |
CHIPPA V K, MOHAPATRA D, ROY K, et al. Scalable effort hardware design[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(9): 2004–2016. doi: 10.1109/TVLSI.2013.2276759.
|
[4] |
NOWICK S M. Design of a low-latency asynchronous adder using speculative completion[J]. IEE Proceedings - Computers and Digital Techniques, 1996, 143(5): 301–307. doi: 10.1049/ip-cdt:19960704.
|
[5] |
LU S L. Speeding up processing with approximation circuits[J]. Computer, 2004, 37(3): 67–73. doi: 10.1109/MC.2004.1274006.
|
[6] |
ESPOSITO D, DE CARO D, NAPOLI E, et al. Variable latency speculative Han-Carlson adder[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(5): 1353–1361. doi: 10.1109/TCSI.2015.2403036.
|
[7] |
SEOK H, SEO H, LEE J, et al. A novel efficient approximate adder design using single input pair based computation[C]. 2022 19th International SoC Design Conference (ISOCC), Gangneung-si, Korea, 2022: 57–58. doi: 10.1109/ISOCC56007.2022.10031341.
|
[8] |
SEO H and KIM Y. A low latency approximate adder design based on dual sub-adders with error recovery[J]. IEEE Transactions on Emerging Topics in Computing, 2023, 11(3): 811–816. doi: 10.1109/TETC.2023.3270963.
|
[9] |
MANOHAR P S, ROHAN B, RAMANA P V S, et al. Implementation of carry look Ahead adder with 2-bit approximate adder[C]. 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 2023: 1543–1547. doi: 10.1109/ICAAIC56838.2023.10140683.
|
[10] |
YAN Aibin, WEI Shaojie, LI Zhixing, et al. Design of low-cost approximate CMOS full adders[C]. 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10181531.
|
[11] |
LAGIDI P, ISWARYA A, RAJESH G, et al. Design of 16-bit and 32-bit approximate full adder using majority logic[C]. 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 2021: 1–5. doi: 10.1109/GCAT52182.2021.9587782.
|
[12] |
LIU Bo, XUE Anfeng, WANG Ziyu, et al. A reconfigurable approximate computing architecture with dual-VDD for low-power Binarized weight network deployment[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(1): 291–295. doi: 10.1109/TCSII.2022.3196045.
|
[13] |
MITCHELL J N. Computer multiplication and division using binary logarithms[J]. IRE Transactions on Electronic Computers, 1962, EC-11(4): 512–517. doi: 10.1109/TEC.1962.5219391.
|
[14] |
KIM M S, DEL BARRIO A A, OLIVEIRA L T, et al. Efficient Mitchell's approximate log multipliers for convolutional neural networks[J]. IEEE Transactions on Computers, 2019, 68(5): 660–675. doi: 10.1109/TC.2018.2880742.
|
[15] |
NUNZIATA I, ZACHARELOS E, SAGGESE G, et al. Approximate recursive multipliers using carry truncation and error compensation[C]. 2022 17th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Villasimius, Italy, 2022: 137–140. doi: 10.1109/PRIME55000.2022.9816787.
|
[16] |
WARIS H, WANG Chenghua, LIU Weiqiang, et al. Hybrid partial product-based high-performance approximate recursive multipliers[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 507–513. doi: 10.1109/TETC.2020.3013977.
|
[17] |
SHANKAR R G and ANANTHI D R. Approximate booth multipliers using compressors and counter[C]. 2023 International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal, 2023: 1658–1662. doi: 10.1109/ICICT57646.2023.10134198.
|
[18] |
LIU Bo, CAI Hao, ZHANG Zilong, et al. Multiplication circuit architecture for error- tolerant CNN-based keywords speech recognition[J]. IEEE Design & Test, 2023, 40(3): 26–35. doi: 10.1109/MDAT.2021.3135346.
|
[19] |
SAYADI L, TIMARCHI S, and SHEIKH-AKBARI A. Two efficient approximate unsigned multipliers by developing new configuration for approximate 4: 2 compressors[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(4): 1649–1659. doi: 10.1109/TCSI.2023.3242558.
|
[20] |
ZHANG Mingtao, NISHIZAWA S, and KIMURA S. Area efficient approximate 4-2 compressor and probability-based error adjustment for approximate multiplier[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(5): 1714–1718. doi: 10.1109/TCSII.2023.3257852.
|
[21] |
XIE Na, ZHANG Renyuan, YAN Han, et al. Compressors evolution based high speed and energy efficient approximate signed multiplier[C]. 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nanjing, China, 2022: 1–3. doi: 10.1109/ICSICT55466.2022.9963435.
|
[22] |
TONG J Y F, NAGLE D, and RUTENBAR R A. Reducing power by optimizing the necessary precision/range of floating-point arithmetic[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2000, 8(3): 273–286. doi: 10.1109/92.845894.
|
[23] |
EILERT J, EHLIAR A, and LIU Dake. Using low precision floating point numbers to reduce memory cost for MP3 decoding[C]. 2004 IEEE 6th Workshop on Multimedia Signal Processing, Siena, Italy, 2004: 119–122. doi: 10.1109/MMSP.2004.1436435.
|
[24] |
ZHANG Hang, PUTIC M, and LACH J. Low power GPGPU computation with imprecise hardware[C]. 51st ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, USA, 2014: 1–6. doi: 10.1109/dac.2014.6881426.
|
[25] |
YIN Peipei, WANG Chenghua, LIU Weiqiang, et al. Design and performance evaluation of approximate floating-point multipliers[C]. 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, USA, 2016: 296–301. doi: 10.1109/ISVLSI.2016.15.
|
[26] |
SAVIO M M D, DEEPA T, DHARSHINI P D, et al. Design and implementation of approximate divider for error-resilient image processing applications[C]. 2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichirappalli, India, 2023: 1–5. doi: 10.1109/ICEEICT56924.2023.10157050.
|
[27] |
SHRIRAM A, TIWARI A, ANIL KUMAR U, et al. Power efficient approximate divider architecture for error resilient applications[C]. 2022 IEEE 6th Conference on Information and Communication Technology (CICT), Gwalior, India, 2022: 1–6. doi: 10.1109/CICT56698.2022.9997960.
|
[28] |
WU Yong, JIANG Honglan, MA Zining, et al. An energy-efficient approximate divider based on logarithmic conversion and piecewise constant approximation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(7): 2655–2668. doi: 10.1109/TCSI.2022.3167894.
|
[29] |
SAADAT H, JAVAID H, and PARAMESWARAN S. Approximate integer and floating-point dividers with near-zero error bias[C]. 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, USA, 2019: 1–6. doi: 10.1145/3316781.3317773.
|
[30] |
LIU Weiqiang, XU Tao, LI Jing, et al. Design of unsigned approximate hybrid dividers based on restoring array and logarithmic dividers[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 339–350. doi: 10.1109/TETC.2020.3022290.
|
[31] |
WUERDIG R N, SARTORI M L L, ABREU B A, et al. Mitigating asynchronous QDI drawbacks on MAC operators with approximate multipliers[C]. 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, USA, 2022: 1269–1273. doi: 10.1109/ISCAS48785.2022.9937420.
|
[32] |
MISHRA V, PANDEY D, SINGH S, et al. ART-MAC: Approximate rounding and truncation based MAC unit for fault-tolerant applications[C]. 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, USA, 2022: 1640–1644. doi: 10.1109/ISCAS48785.2022.9937437.
|
[33] |
ESPOSITO D, DE CARO D, NAPOLI E, et al. On the use of approximate adders in carry-save multiplier-accumulators[C]. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, 2017: 1–4. doi: 10.1109/ISCAS.2017.8050437.
|
[34] |
WANG Ziyu, WEI Qingwen, XUE Anfeng, et al. Low-power computing unit based on heterogeneous approximate structure for binary convolutional neural network[C]. 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nanjing, China, 2022: 1–3. doi: 10.1109/ICSICT55466.2022.9963452.
|
[35] |
MEO G D, SAGGESE G, STROLLO A G M, et al. Approximate MAC unit using static segmentation[J]. IEEE Transactions on Emerging Topics in Computing, 2023. doi: 10.1109/TETC.2023.3315301.
|
[36] |
LIU Bo, ZHANG Zilong, CAI Hao, et al. Self-compensation tensor multiplication unit for adaptive approximate computing in low-power CNN processing[J]. Science China Information Sciences, 2022, 65(4): 149403. doi: 10.1007/s11432-021-3242-6.
|
[37] |
LIU Bo, ZHANG Renyuan, SHEN Qiao, et al. W-AMA: Weight-aware approximate multiplication architecture for neural processing[J]. Computers and Electrical Engineering, 2023, 111: 108921. doi: 10.1016/j.compeleceng.2023.108921.
|
[38] |
JIANG Honglan, LIU Leibo, JONKER P P, et al. A high-performance and energy-efficient FIR adaptive filter using approximate distributed arithmetic circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(1): 313–326. doi: 10.1109/TCSI.2018.2856513.
|
[39] |
ESPOSITO D, DI MEO G, DE CARO D, et al. Quality-scalable approximate LMS filter[C]. 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 2018: 849–852. doi: 10.1109/ICECS.2018.8617858.
|
[40] |
DI MEO G, DE CARO D, PETRA N, et al. A novel low-power DLMS adaptive filter with sign-magnitude learning and approximated FIR section[C]. 2022 17th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Villasimius, Italy, 2022: 217–220. doi: 10.1109/PRIME55000.2022.9816770.
|
[41] |
MONTEIRO M, SEIDEL I, GRELLERT M, et al. Exploring the impacts of multiple kernel sizes of Gaussian filters combined to approximate computing in canny edge detection[C]. 2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS), Puerto Varas, Chile, 2022: 1–4. doi: 10.1109/LASCAS53948.2022.9789080.
|
[42] |
BERGLAND G. Fast Fourier transform hardware implementations-An overview[J]. IEEE Transactions on Audio and Electroacoustics, 1969, 17(2): 104–108. doi: 10.1109/TAU.1969.1162041.
|
[43] |
ELANGO K and MUNIANDI K. VLSI implementation of an area and energy efficient FFT/IFFT core for MIMO-OFDM applications[J]. Annals of Telecommunications, 2020, 75(5/6): 215–227. doi: 10.1007/s12243-019-00742-6.
|
[44] |
LIU Bo, DING Xiaoling, CAI Hao, et al. Precision adaptive MFCC based on R2SDF-FFT and approximate computing for low-power speech keywords recognition[J]. IEEE Circuits and Systems Magazine, 2021, 21(4): 24–39. doi: 10.1109/MCAS.2021.3118175.
|
[45] |
LIU Weiqiang, LIAO Qicong, QIAO Fei, et al. Approximate designs for Fast Fourier Transform (FFT) with application to speech recognition[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(12): 4727–4739. doi: 10.1109/TCSI.2019.2933321.
|
[46] |
CHEN W H, SMITH C, and FRALICK S. A fast computational algorithm for the discrete cosine transform[J]. IEEE Transactions on Communications, 1977, 25(9): 1004–1009. doi: 10.1109/TCOM.1977.1093941.
|
[47] |
POTLURI U S, MADANAYAKE A, CINTRA R J, et al. Improved 8-point approximate DCT for image and video compression requiring only 14 additions[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(6): 1727–1740. doi: 10.1109/TCSI.2013.2295022.
|
[48] |
DA SILVEIRA T L T, CANTERLE D R, COELHO D F G, et al. A class of low-complexity DCT-like transforms for image and video coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4364–4375. doi: 10.1109/TCSVT.2021.3134054.
|
[49] |
XING Yan, ZHANG Ziji, QIAN Yiduan, et al. An energy-efficient approximate DCT for wireless capsule endoscopy application[C]. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018: 1–4. doi: 10.1109/ISCAS.2018.8351769.
|
[50] |
CAI Lulin, QIAN Yiduan, HE Yajuan, et al. Design of approximate multiplierless DCT with CSD encoding for image processing[C]. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021: 1–4. doi: 10.1109/ISCAS51556.2021.9401200.
|
[51] |
JANHUNEN J, PITKANEN T, SILVEN O, et al. Fixed- and floating-point processor comparison for MIMO-OFDM detector[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1588–1598. doi: 10.1109/JSTSP.2011.2165830.
|
[52] |
AMIN-NEJAD S, BASHARKHAH K, and GASHTEROODKHANI T A. Floating point versus fixed point tradeoffs in FPGA implementations of QR decomposition algorithm[J]. European Journal of Electrical Engineering and Computer Science, 2019, 3(5). doi: 10.24018/EJECE.2019.3.5.127.
|
[53] |
HU Yao and KOIBUCHI M. Accelerating MPI communication using floating-point compression on lossy interconnection networks[C]. 2021 IEEE 46th Conference on Local Computer Networks (LCN), Edmonton, Canada, 2021: 355–358. doi: 10.1109/LCN52139.2021.9524942.
|
[54] |
PARK J, CHOI J H, and ROY K. Dynamic bit-width adaptation in DCT: An approach to trade off image quality and computation energy[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18(5): 787–793. doi: 10.1109/TVLSI.2009.2016839.
|
[55] |
SNIGDHA F S, SENGUPTA D, HU Jiang, et al. Optimal design of JPEG hardware under the approximate computing paradigm[C]. 2016 53rd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, USA, 2016: 1–6. doi: 10.1145/2897937.2898057.
|
[56] |
PU Yu, DE GYVEZ J P, CORPORAAL H, et al. An ultra-low-energy multi-standard JPEG co-processor in 65 nm CMOS with sub/near threshold supply voltage[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 668–680. doi: 10.1109/JSSC.2009.2039684.
|
[57] |
FANG Jian, XU Zongben, ZHANG Bingchen, et al. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 352–363. doi: 10.1109/JSTARS.2013.2263309.
|
[58] |
JIANG Chenglong, ZHANG Bingchen, FANG Jian, et al. Efficient ℓ q regularisation algorithm with range-azimuth decoupled for SAR imaging[J]. Electronics Letters, 2014, 50(3): 204–205. doi: 10.1049/el.2013.1989.
|
[59] |
LI Bo, LIU Falin, ZHOU Chongbin, et al. Mixed sparse representation for approximated observation-based compressed sensing radar imaging[J]. Journal of Applied Remote Sensing, 2018, 12(3): 035015. doi: 10.1117/1.JRS.12.035015.
|
[60] |
LI Bo, LIU Falin, ZHOU Chongbin, et al. Phase error correction for approximated observation-based compressed sensing radar imaging[J]. Sensors, 2017, 17(3): 613. doi: 10.3390/s17030613.
|