Citation: | YANG Ruizhe, XIE Xinru, TENG Yinglei, LI Meng, SUN Yanhua, ZHANG Dajun. Entropy-based Federated Incremental Learning and Optimization in Industrial Internet of Things[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3146-3154. doi: 10.11999/JEIT231240 |
[1] |
BJORNSON E and SANGUINETTI L. Scalable cell-free massive MIMO systems[J]. IEEE Transactions on Communications, 2020, 68(7): 4247–4261. doi: 10.1109/tcomm.2020.2987311.
|
[2] |
YU Wanke and ZHAO Chunhui. Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5081–5091. doi: 10.1109/tie.2019.2931255.
|
[3] |
HUO Ru, ZENG Shiqin, WANG Zhihao, et al. A comprehensive survey on Blockchain in industrial internet of things: Motivations, research progresses, and future challenges[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 88–122. doi: 10.1109/comst.2022.3141490.
|
[4] |
SU Hang, QI Wen, HU Yingbai, et al. An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1864–1872. doi: 10.1109/tii.2020.3036693.
|
[5] |
KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521–3526. doi: 10.1073/pnas.1611835114.
|
[6] |
SHOHAM N, AVIDOR T, KEREN A, et al. Overcoming forgetting in federated learning on non-IID data[J]. arXiv: 1910.07796, 2019. doi: 10.48550/arXiv.1910.07796.
|
[7] |
LI Zhizhong and HOIEM D. Learning without forgetting[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 614–629. doi: 10.1007/978-3-319-46493-0_37.
|
[8] |
DONG Jiahua, WANG Lixu, FANG Zhen, et al. Federated class-incremental learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 10154–10163. doi: 10.1109/cvpr52688.2022.00992.
|
[9] |
MAZUR M, PUSTELNIK Ł, KNOP S, et al. Target layer regularization for continual learning using Cramer-Wold distance[J]. Information Sciences, 2022, 609: 1369–1380. doi: 10.1016/j.ins.2022.07.085.
|
[10] |
REBUFFI S-A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental classifier and representation learning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5533–5542. doi: 10.1109/cvpr.2017.587.
|
[11] |
WANG Qiang, LIU Jiayi, JI Zhong, et al. Hierarchical correlations replay for continual learning[J]. Knowledge-Based Systems, 2022, 250: 109052. doi: 10.1016/j.knosys.2022.109052.
|
[12] |
JI Zhong, LI Jin, WANG Qiang, et al. Complementary calibration: Boosting general continual learning with collaborative distillation and self-supervision[J]. IEEE Transactions on Image Processing, 2023, 32: 657–667. doi: 10.1109/tip.2022.3230457.
|
[13] |
HAO Meng, LI Hongwei, LUO Xizhao, et al. Efficient and privacy-enhanced federated learning for industrial artificial intelligence[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6532–6542. doi: 10.1109/tii.2019.2945367.
|
[14] |
CHEN Zhixiong, YI Wenqiang, DENG Yansha, et al. Device scheduling for wireless federated learning with latency and representativity[C]. 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Maldives, Maldives, 2022: 1–6. doi: 10.1109/iceccme55909.2022.9988590.
|
[15] |
YANG Zhaohui, CHEN Mingzhe, SAAD W, et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1935–1949. doi: 10.1109/twc.2020.3037554.
|
[16] |
DINH C T, TRAN N H, NGUYEN M N H, et al. Federated learning over wireless networks: Convergence analysis and resource allocation[J]. IEEE/ACM Transactions on Networking, 2021, 29(1): 398–409. doi: 10.1109/tnet.2020.3035770.
|
[17] |
JING Shusen and XIAO Chengshan. Federated learning via over-the-air computation with statistical channel state information[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9351–9365. doi: 10.1109/twc.2022.3175887.
|
[18] |
YANG Ruizhe. The adaptive distributed learning based on homomorphic encryption and blockchain[J]. High Technology Letters, 2022, 28(4): 337–344. doi: 10.3772/j.issn.1006-6748.2022.04.001.
|
[19] |
ZHAO Rui, SONG Jinming, YUAN Yufeng, et al. Maximum entropy population-based training for zero-shot human-AI coordination[C]. The AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 6145–6153. doi: 10.1609/aaai.v37i5.25758.
|
[20] |
ZHANG Peiying, WANG Chao, JIANG Chunxiao, et al. Deep reinforcement learning assisted federated learning algorithm for data management of IIoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8475–8484. doi: 10.1109/tii.2021.3064351.
|
[21] |
WANG Shiqiang, TUOR T, SALONIDIS T, et al. Adaptive federated learning in resource constrained edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1205–1221. doi: 10.1109/jsac.2019.2904348.
|
[22] |
KRIZHEVSKY A and HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4).
|
[23] |
SHAFIQ M and GU Zhaoquan. Deep residual learning for image recognition: A survey[J]. Applied Sciences, 2022, 12(18): 8972. doi: 10.3390/app12188972.
|
[24] |
MINAEE S, KALCHBRENNER N, CAMBRIA E, et al. Deep learning-based text classification: A comprehensive review[J]. ACM Computing Surveys, 2022, 54(3): 62. doi: 10.1145/3439726.
|