Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
YANG Ruizhe, XIE Xinru, TENG Yinglei, LI Meng, SUN Yanhua, ZHANG Dajun. Entropy-based Federated Incremental Learning and Optimization in Industrial Internet of Things[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3146-3154. doi: 10.11999/JEIT231240
Citation: YANG Ruizhe, XIE Xinru, TENG Yinglei, LI Meng, SUN Yanhua, ZHANG Dajun. Entropy-based Federated Incremental Learning and Optimization in Industrial Internet of Things[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3146-3154. doi: 10.11999/JEIT231240

Entropy-based Federated Incremental Learning and Optimization in Industrial Internet of Things

doi: 10.11999/JEIT231240 cstr: 32379.14.JEIT231240
Funds:  The National Natural Science Foundation of China (62171062, 62371012)
  • Received Date: 2023-11-08
  • Rev Recd Date: 2024-04-21
  • Available Online: 2024-05-13
  • Publish Date: 2024-08-30
  • In the face of large-scale, diverse, and time-evolving data, as well as machine learning tasks in industrial production processes, a Federated Incremental Learning(FIL) and optimization method based on information entropy is proposed in this paper. Within the federated framework, local computing nodes utilize local data for model training, and compute the average entropy to be transmitted to the server to assist in identifying class-incremental tasks. The global server then selects local nodes for current round training based on the locally provided average entropy and makes decisions on task incrementality, followed by global model deployment and aggregation updates. The proposed method combines average entropy and thresholds for nodes selection in various situations, achieving stable model learning under low average entropy and incremental model expansion under high average entropy. Additionally, convex optimization is employed to adaptively adjust aggregation frequency and resource allocation in resource-constrained scenarios, ultimately achieving effective model convergence. Simulation results demonstrate that the proposed method accelerates model convergence and enhances training accuracy in different scenarios.
  • loading
  • [1]
    BJORNSON E and SANGUINETTI L. Scalable cell-free massive MIMO systems[J]. IEEE Transactions on Communications, 2020, 68(7): 4247–4261. doi: 10.1109/tcomm.2020.2987311.
    [2]
    YU Wanke and ZHAO Chunhui. Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5081–5091. doi: 10.1109/tie.2019.2931255.
    [3]
    HUO Ru, ZENG Shiqin, WANG Zhihao, et al. A comprehensive survey on Blockchain in industrial internet of things: Motivations, research progresses, and future challenges[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 88–122. doi: 10.1109/comst.2022.3141490.
    [4]
    SU Hang, QI Wen, HU Yingbai, et al. An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1864–1872. doi: 10.1109/tii.2020.3036693.
    [5]
    KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521–3526. doi: 10.1073/pnas.1611835114.
    [6]
    SHOHAM N, AVIDOR T, KEREN A, et al. Overcoming forgetting in federated learning on non-IID data[J]. arXiv: 1910.07796, 2019. doi: 10.48550/arXiv.1910.07796.
    [7]
    LI Zhizhong and HOIEM D. Learning without forgetting[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 614–629. doi: 10.1007/978-3-319-46493-0_37.
    [8]
    DONG Jiahua, WANG Lixu, FANG Zhen, et al. Federated class-incremental learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 10154–10163. doi: 10.1109/cvpr52688.2022.00992.
    [9]
    MAZUR M, PUSTELNIK Ł, KNOP S, et al. Target layer regularization for continual learning using Cramer-Wold distance[J]. Information Sciences, 2022, 609: 1369–1380. doi: 10.1016/j.ins.2022.07.085.
    [10]
    REBUFFI S-A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental classifier and representation learning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5533–5542. doi: 10.1109/cvpr.2017.587.
    [11]
    WANG Qiang, LIU Jiayi, JI Zhong, et al. Hierarchical correlations replay for continual learning[J]. Knowledge-Based Systems, 2022, 250: 109052. doi: 10.1016/j.knosys.2022.109052.
    [12]
    JI Zhong, LI Jin, WANG Qiang, et al. Complementary calibration: Boosting general continual learning with collaborative distillation and self-supervision[J]. IEEE Transactions on Image Processing, 2023, 32: 657–667. doi: 10.1109/tip.2022.3230457.
    [13]
    HAO Meng, LI Hongwei, LUO Xizhao, et al. Efficient and privacy-enhanced federated learning for industrial artificial intelligence[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6532–6542. doi: 10.1109/tii.2019.2945367.
    [14]
    CHEN Zhixiong, YI Wenqiang, DENG Yansha, et al. Device scheduling for wireless federated learning with latency and representativity[C]. 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Maldives, Maldives, 2022: 1–6. doi: 10.1109/iceccme55909.2022.9988590.
    [15]
    YANG Zhaohui, CHEN Mingzhe, SAAD W, et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1935–1949. doi: 10.1109/twc.2020.3037554.
    [16]
    DINH C T, TRAN N H, NGUYEN M N H, et al. Federated learning over wireless networks: Convergence analysis and resource allocation[J]. IEEE/ACM Transactions on Networking, 2021, 29(1): 398–409. doi: 10.1109/tnet.2020.3035770.
    [17]
    JING Shusen and XIAO Chengshan. Federated learning via over-the-air computation with statistical channel state information[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9351–9365. doi: 10.1109/twc.2022.3175887.
    [18]
    YANG Ruizhe. The adaptive distributed learning based on homomorphic encryption and blockchain[J]. High Technology Letters, 2022, 28(4): 337–344. doi: 10.3772/j.issn.1006-6748.2022.04.001.
    [19]
    ZHAO Rui, SONG Jinming, YUAN Yufeng, et al. Maximum entropy population-based training for zero-shot human-AI coordination[C]. The AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 6145–6153. doi: 10.1609/aaai.v37i5.25758.
    [20]
    ZHANG Peiying, WANG Chao, JIANG Chunxiao, et al. Deep reinforcement learning assisted federated learning algorithm for data management of IIoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8475–8484. doi: 10.1109/tii.2021.3064351.
    [21]
    WANG Shiqiang, TUOR T, SALONIDIS T, et al. Adaptive federated learning in resource constrained edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1205–1221. doi: 10.1109/jsac.2019.2904348.
    [22]
    KRIZHEVSKY A and HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4).
    [23]
    SHAFIQ M and GU Zhaoquan. Deep residual learning for image recognition: A survey[J]. Applied Sciences, 2022, 12(18): 8972. doi: 10.3390/app12188972.
    [24]
    MINAEE S, KALCHBRENNER N, CAMBRIA E, et al. Deep learning-based text classification: A comprehensive review[J]. ACM Computing Surveys, 2022, 54(3): 62. doi: 10.1145/3439726.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (234) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return