Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
XIAO Yihan, WANG Boyu, YU Xiangzhen, JIANG Yilin. Radar Emitter Identification Based on Dual Radio Frequency Fingerprint Convolutional Neural Network and Feature Fusion[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3238-3245. doi: 10.11999/JEIT231236
Citation: XIAO Yihan, WANG Boyu, YU Xiangzhen, JIANG Yilin. Radar Emitter Identification Based on Dual Radio Frequency Fingerprint Convolutional Neural Network and Feature Fusion[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3238-3245. doi: 10.11999/JEIT231236

Radar Emitter Identification Based on Dual Radio Frequency Fingerprint Convolutional Neural Network and Feature Fusion

doi: 10.11999/JEIT231236 cstr: 32379.14.JEIT231236
  • Received Date: 2023-11-07
  • Rev Recd Date: 2024-04-15
  • Available Online: 2024-04-25
  • Publish Date: 2024-08-30
  • In order to achieve identification of radar emitter unaffected by signal parameters and modulation methods, a method based on Dual Radio Frequency Fingerprint Convolutional Neural Network (Dual RFF-CNN2) and feature fusion is proposed in this paper. Firstly, Raw-In-phase/Quadrature (Raw-I/Q) signals are extracted from the received radio frequency signals. Secondly, Axially Integral Bispectrum (AIB) and Square Integral Bispectrum (SIB) dimensionality reduction are performed separately on Raw-I/Q signals to construct the bispectrum integration matrix. Finally, both the Raw-I/Q signals and the bispectrum integration matrix are fed into the Dual RFF-CNN2 network for feature fusion to achieve identification of radar emitter. Experimental results demonstrate that this method achieves high identification accuracy, and the extracted "fingerprint features" exhibit stability and robustness.
  • loading
  • [1]
    ZHAO Shiqiang, ZENG Deguo, WANG Wenhai, et al. Mutation grey wolf elite PSO balanced XGBoost for radar emitter individual identification based on measured signals[J]. Measurement, 2020, 159(5): 107777. doi: 10.1016/j.measurement.2020.107777.
    [2]
    ELDEMERDASH Y A, DOBRE O A, ÜRETEN O, et al. Identification of cellular networks for intelligent radio measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8): 2204–2211. doi: 10.1109/tim.2017.2687539.
    [3]
    MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160–167. doi: 10.1109/JSTSP.2018.2796446.
    [4]
    陈蒙, 邢小鹏, 陈世文, 等. 基于贝塞尔曲线的雷达信号脉内无意调相特征提取及个体识别[J]. 信息工程大学学报, 2022, 23(1): 9–17. doi: 10.3969/j.issn.1671-0673.2022.01.002.

    CHEN Meng, XING Xiaopeng, CHEN Shiwen, et al. Unintentional phase modulation on pulse feature extraction and radar specific emitter identification based on Bezier curve[J]. Journal of Information Engineering University, 2022, 23(1): 9–17. doi: 10.3969/j.issn.1671-0673.2022.01.002.
    [5]
    秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084.

    QIN Xin, HUANG Jie, WANG Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084.
    [6]
    RU Xiaohu, YE Haohuan, LIU Zheng, et al. An experimental study on secondary radar transponder UMOP characteristics[C]. 2016 European Radar Conference, London, UK, 2016: 314–317.
    [7]
    LUO Zhenyu, CAO Yunhe, YEO T S, et al. Few-Shot radar jamming recognition network via time-frequency self-attention and global knowledge distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5105612. doi: 10.1109/TGRS.2023.3280322.
    [8]
    李宝平, 魏坡. 基于CWD谱图和改进CNN的无线电调制分类[J]. 电子测量技术, 2023, 46(5): 50–56. doi: 10.19651/j.cnki.emt.2210805.

    LI Baoping and WEI Po. Radio modulation classification based on CWD spectrogram and improved CNN[J]. Electronic Measurement Technology, 2023, 46(5): 50–56. doi: 10.19651/j.cnki.emt.2210805.
    [9]
    ZHEN Pan, ZHANG Bangning, CHEN Zhibo, et al. Spectrum sensing method based on wavelet transform and residual network[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2517–2521. doi: 10.1109/LWC.2022.3207296.
    [10]
    LI Jianfeng, HUANG Dingkun, YAN Xiaopeng, et al. Low SNR FM signal preprocessing method based on low-order cyclic statistics and WVD distribution[C]. The 2nd International Conference on Robotics, Artificial Intelligence and Intelligent Control, Mianyang, China, 2023: 258–262. doi: 10.1109/RAIIC59453.2023.10280797.
    [11]
    SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 581–591. doi: 10.1109/TIFS.2018.2855665.
    [12]
    肖易寒, 李栋年, 于祥祯, 等. 基于参数优化VMD和LightGBM的雷达辐射源个体识别[J]. 航空兵器, 2022, 29(2): 93–100. doi: 10.12132/ISSN.1673-5048.2021.0073.

    XIAO Yihan, LI Dongnian, YU Xiangzhen, et al. Radar emitter individual identification based on parameter optimization VMD and LightGBM[J]. Aero Weaponry, 2022, 29(2): 93–100. doi: 10.12132/ISSN.1673-5048.2021.0073.
    [13]
    陈翔, 汪连栋, 许雄, 等. 基于Raw I/Q和深度学习的射频指纹识别方法综述[J]. 雷达学报, 2023, 12(1): 214–234. doi: 10.12000/JR22140.

    CHEN Xiang, WANG Liandong, XU Xiong, et al. A review of radio frequency fingerprinting methods based on Raw I/Q and deep learning[J]. Journal of Radars, 2023, 12(1): 214–234. doi: 10.12000/JR22140.
    [14]
    TU Ya, LIN Yun, ZHA Haoran, et al. Large-scale real-world radio signal recognition with deep learning[J]. Chinese Journal of Aeronautics, 2022, 35(9): 35–48. doi: 10.1016/j.cja.2021.08.016.
    [15]
    SANKHE K, BELGIOVINE M, ZHOU Fan, et al. ORACLE: Optimized radio clAssification through convolutional neuraL nEtworks[C]. The IEEE Conference on Computer Communications, Pairs, France, 2019: 370–378. doi: 10.1109/INFOCOM.2019.8737463.
    [16]
    YU Jiabao, HU Aiqun, LI Guyue, et al. A robust RF fingerprinting approach using multisampling convolutional neural network[J]. IEEE Internet of Things Journal, 2019, 6(4): 6786–6799. doi: 10.1109/JIOT.2019.2911347.
    [17]
    WAN Tao, JI Hao, XIONG Wanan, et al. Deep learning-based specific emitter identification using integral bispectrum and the slice of ambiguity function[J]. Signal, Image and Video Processing, 2022, 16(7): 2009–2017. doi: 10.1007/s11760-022-02162-x.
    [18]
    ELMAGHBUB A and HAMDAOUI B. Leveraging hardware-impaired out-of-band information through deep neural networks for robust wireless device classification[J]. arXiv preprint arXiv: 2004.11126, 2020.
    [19]
    王亮, 肖易寒. Transformer网络在雷达辐射源识别中的应用[J]. 应用科技, 2021, 48(5): 81–85,104. doi: 10.11991/yykj.202101008.

    WANG Liang and XIAO Yihan. Application of transformer network in radar emitter recognition[J]. Applied Science and Technology, 2021, 48(5): 81–85,104. doi: 10.11991/yykj.202101008.
    [20]
    崔天舒, 赵文杰, 黄永辉, 等. 基于射频指纹的测控地面站身份识别方法[J]. 航天电子对抗, 2021, 37(3): 6–9,23. doi: 10.16328/j.htdz8511.2021.03.002.

    CUI Tianshu, ZHAO Wenjie, HUANG Yonghui, et al. Radio frequency fingerprint-based TT&C ground station identification method[J]. Aerospace Electronic Warfare, 2021, 37(3): 6–9,23. doi: 10.16328/j.htdz8511.2021.03.002.
    [21]
    SUN Liting, WANG Xiang, YANG Afeng, et al. Radio frequency fingerprint extraction based on multi-dimension approximate entropy[J]. IEEE Signal Processing Letters, 2020, 27: 471–475. doi: 10.1109/LSP.2020.2978333.
    [22]
    翁琳天然, 彭进霖, 何元, 等. 基于深度残差网络的ADS-B信号辐射源个体识别[J]. 航空兵器, 2021, 28(4): 24–29. doi: 10.12132/ISSN.1673-5048.2020.0095.

    WENG Lintianran, PENG Jinlin, HE Yuan, et al. Specific emitter identification of ADS-B signal based on deep residual network[J]. Aero Weaponry, 2021, 28(4): 24–29. doi: 10.12132/ISSN.1673-5048.2020.0095.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (345) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return