Citation: | GAO Ying, XIE Yuxin, DENG Huanghao, ZHU Zukun, ZHANG Yiyu. A Privacy-preserving Data Alignment Framework for Vertical Federated Learning[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3419-3427. doi: 10.11999/JEIT231234 |
[1] |
YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 12. doi: 10.1145/3298981.
|
[2] |
刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022, 33(3): 1057–1092. doi: 10.13328/j.cnki.jos.006446.
LIU Yixuan, CHEN Hong, LIU Yuhan, et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2022, 33(3): 1057–1092. doi: 10.13328/j.cnki.jos.006446.
|
[3] |
LI Tian, SAHU A K, TALWALKAR A, et al. Federated learning: Challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50–60. doi: 10.1109/MSP.2020.2975749.
|
[4] |
KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends® in Machine Learning, 2021, 14(1/2): 1–210. doi: 10.1561/2200000083.
|
[5] |
BELTRÁN E T M, PÉREZ M Q, SÁNCHEZ P M S, et al. Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(4): 2983–3013. doi: 10.1109/COMST.2023.3315746.
|
[6] |
陈晋音, 李荣昌, 黄国瀚, 等. 纵向联邦学习方法及其隐私和安全综述[J]. 网络与信息安全学报, 2023, 9(2): 1–20. doi: 10.11959/j.issn.2096−109x.2023017.
CHEN Jinyin, LI Rongchang, HUANG Guohan, et al. Survey on vertical federated learning: Algorithm, privacy and security[J]. Chinese Journal of Network and Information Security, 2023, 9(2): 1–20. doi: 10.11959/j.issn.2096−109x.2023017.
|
[7] |
LIU Yang, KANG Yan, ZOU Tianyuan, et al. Vertical federated learning: Concepts, advances and challenges[J]. arXiv: 2211.12814, 2023.
|
[8] |
ROMANINI D, HALL A J, PAPADOPOULOS P, et al. Pyvertical: A vertical federated learning framework for multi-headed splitNN[J]. arXiv: 2104.00489, 2021.
|
[9] |
LI Qun, THAPA C, ONG L, et al. Vertical federated learning: Taxonomies, threats, and prospects[J]. arXiv: 2302.01550, 2023.
|
[10] |
WEI Kang, LI Jun, MA Chuan, et al. Vertical federated learning: Challenges, methodologies and experiments[J]. arXiv: 2202.04309, 2022.
|
[11] |
FREEDMAN M J, NISSIM K, and PINKAS B. Efficient private matching and set intersection[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, 2004: 1–19. doi: 10.1007/978-3-540-24676-3_1.
|
[12] |
PINKAS B, SCHNEIDER T, TKACHENKO O, et al. Efficient circuit-based PSI with linear communication[C]. The 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, 2019: 122–153. doi: 10.1007/978-3-030-17659-4_5.
|
[13] |
PINKAS B, SCHNEIDER T, and ZOHNER M. Scalable private set intersection based on OT extension[J]. ACM Transactions on Privacy and Security, 2018, 21(2): 7. doi: 10.1145/3154794.
|
[14] |
PINKAS B, ROSULEK M, TRIEU N, et al. PSI from PaXoS: Fast, malicious private set intersection[C]. The 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2020: 739–767. doi: 10.1007/978-3-030-45724-2_25.
|
[15] |
LU Linpeng and DING Ning. Multi-party private set intersection in vertical federated learning[C]. The 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, Guangzhou, China, 2020: 707–714. doi: 10.1109/TrustCom50675.2020.00098.
|
[16] |
HARDY S, HENECKA W, IVEY-LAW H, et al. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[J]. arXiv: 1711.10677, 2017.
|
[17] |
LIU Yang, ZHANG Xiong, and WAN Libin. Asymmetrical vertical federated learning[J]. arXiv: 2004.07427, 2020.
|
[18] |
RINDAL P and SCHOPPMANN P. VOLE-PSI: Fast OPRF and circuit-psi from vector-ole[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021: 901–930. doi: 10.1007/978-3-030-77886-6_31.
|
[19] |
CHANDRAN N, GUPTA D, and SHAH A. Circuit-PSI with linear complexity via relaxed batch OPPRF[J]. Proceedings on Privacy Enhancing Technologies, 2022, 2022(1): 353–372. doi: 10.2478/POPETS-2022-0018.
|
[20] |
RAGHURAMAN S and RINDAL P. Blazing fast PSI from improved OKVS and subfield vole[C]. 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2022: 2505–2517. doi: 10.1145/3548606.3560658.
|
[21] |
LIU Yang, ZHANG Bingsheng, MA Yuxiang, et al. iPrivJoin: An ID-private data join framework for privacy-preserving machine learning[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 4300–4312. doi: 10.1109/TIFS.2023.3288455.
|
[22] |
AGRAWAL R, EVFIMIEVSKI A, and SRIKANT R. Information sharing across private databases[C]. 2003 ACM SIGMOD International Conference on Management of Data, San Diego, USA, 2003: 86–97. doi: 10.1145/872757.872771.
|
[23] |
AHIRWAL R R and AHKE M. Elliptic curve diffie-hellman key exchange algorithm for securing hypertext information on wide area network[J]. International Journal of Computer Science and Information Technologies, 2013, 4(2): 363–368.
|
[24] |
PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[C]. International Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, 1999: 223–238. doi: 10.1007/3-540-48910-X_16.
|
[25] |
SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612–613. doi: 10.1145/359168.359176.
|
[26] |
BONAWITZ K A, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale: System design[C]. Machine Learning and Systems 2019, Stanford, USA, 2019.
|
[27] |
SHAMIR A, RIVEST R L, and ADLEMAN L M. Mental poker[M]. KLARNER D A. The Mathematical Gardner. Boston: Springer, 1981: 37–43. doi: 10.1007/978-1-4684-6686-7_5.
|
[28] |
POHLIG S and HELLMAN M. An improved algorithm for computing logarithms overGF(p)and its cryptographic significance (Corresp. )[J]. IEEE Transactions on information Theory, 1978, 24(1): 106–110. doi: 10.1109/TIT.1978.1055817.
|
[29] |
DIFFIE W and HELLMAN M. New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6): 644–654. doi: 10.1109/TIT.1976.1055638.
|
[30] |
LECUN Y. The MNIST database of handwritten digits[EB/OL]. http://yann.lecun.com/exdb/mnist/, 1998.
|
[31] |
BARNES R. CrypTen[EB/OL].https://github.com/facebookresearch/CrypTen, 2020.
|