Citation: | GUO Zekun, LIU Zheng, XIE Rong, RAN Lei, XU Hanzheng. Airborne Target Recognition of Narrowband Radar Short Time Observation Echoes Based on Feature Fusion[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3184-3192. doi: 10.11999/JEIT231232 |
[1] |
梁复台, 李宏权, 刘安波, 等. 基于CNN的窄带雷达空中目标识别方法[J]. 火力与指挥控制, 2020, 45(6): 85–90. doi: 10.3969/j.issn.1002-0640.2020.06.016.
LIANG Futai, LI Hongquan, LIU Anbo, et al. Research on aerial target recognition method for narrow-band radar based on CNN[J]. Fire Control & Command Control, 2020, 45(6): 85–90. doi: 10.3969/j.issn.1002-0640.2020.06.016.
|
[2] |
CHEN V C, LI Fayin, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402.
|
[3] |
赵越, 陈之纯, 纠博, 等. 一种基于时频分析的窄带雷达飞机目标分类特征提取方法[J]. 电子与信息学报, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204.
ZHAO Yue, CHEN Zhichun, JIU Bo, et al. Narrowband aircraft targets feature extraction and classification based on time-frequency analysis[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204.
|
[4] |
王颖. 窄带雷达空中目标识别技术研究[D]. [硕士论文], 西安电子科技大学, 2022. doi: 10.27389/d.cnki.gxadu.2022.002380.
WANG Ying. Research on air target recognition technology of narrowband radar[D]. [Master dissertation], Xidian University, 2022. doi: 10.27389/d.cnki.gxadu.2022.002380.
|
[5] |
高瑞明, 李明星. 基于调制谱图卷积神经网络的空中目标识别技术[J]. 电光与控制, 2021, 28(2): 59–64. doi: 10.3969/j.issn.1671-637X.2021.02.012.
GAO Ruiming and LI Mingxing. Aerial target recognition based on CNN processing of modulation spectrum graphs[J]. Electronics Optics & Control, 2021, 28(2): 59–64. doi: 10.3969/j.issn.1671-637X.2021.02.012.
|
[6] |
林青松, 胡卫东, 虞华, 等. 低分辨雷达回波序列轮廓像目标分类方法研究[J]. 现代雷达, 2005, 27(3): 24–28. doi: 10.16592/j.cnki.1004-7859.2005.03.008.
LIN Qingsong, HU Weidong, YU Hua, et al. A study of target classification method based on low-resolution radar return sequences image profile[J]. Modern Radar, 2005, 27(3): 24–28. doi: 10.16592/j.cnki.1004-7859.2005.03.008.
|
[7] |
梁复台, 李宏权, 张晨浩. 基于深度迁移学习的窄带雷达群目标识别方法[J]. 兵器装备工程学报, 2020, 41(4): 143–147. doi: 10.11809/bqzbgcxb2020.04.028.
LIANG Futai, LI Hongquan, and ZHANG Chenhao. Narrowband radar unresolved targets recognition method based on deep transfer learning[J]. Journal of Ordnance Equipment Engineering, 2020, 41(4): 143–147. doi: 10.11809/bqzbgcxb2020.04.028.
|
[8] |
狄方旭, 王小平, 林秦颖, 等. 雷达与红外数据融合的近距空中目标识别[J]. 电光与控制, 2014, 21(9): 54–57,75. doi: 10.3969/j.issn.1671-637X.2014.09.012.
DI Fangxu, WANG Xiaoping, LIN Qinying, et al. Close aerial target recognition based on data fusion of radar and infrared sensor[J]. Electronics Optics & Control, 2014, 21(9): 54–57,75. doi: 10.3969/j.issn.1671-637X.2014.09.012.
|
[9] |
吴强, 姜礼平, 季傲. 基于模糊集和D-S证据理论的空中作战目标识别[J]. 指挥控制与仿真, 2015, 37(4): 54–58. doi: 10.3969/j.issn.1673-3819.2015.04.012.
WU Qiang, JIANG Liping, and JI Ao. Aircraft target identification based on fuzzy sets and D-S evidence theory in air operation[J]. Command Control & Simulation, 2015, 37(4): 54–58. doi: 10.3969/j.issn.1673-3819.2015.04.012.
|
[10] |
魏文博, 蔡红军. 基于支持向量机的窄带雷达弹道导弹目标识别技术[J]. 电子科技, 2016, 29(6): 75–78. doi: 10.16180/j.cnki.issn1007-7820.2016.06.022.
WEI Wenbo and CAI Hongjun. Narrowband radar ballistic missile target recognition technology based on SVM[J]. Electronic Science and Technology, 2016, 29(6): 75–78. doi: 10.16180/j.cnki.issn1007-7820.2016.06.022.
|
[11] |
GAO Yong, ZHOU Yu, WANG Yan, et al. Narrowband radar automatic target recognition based on a hierarchical fusing network with multidomain features[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1039–1043. doi: 10.1109/LGRS.2020.2993039.
|
[12] |
TIAN Xudong, BAI Xueru, and ZHOU Feng. Recognition of micro-motion space targets based on attention-augmented cross-modal feature fusion recognition network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5104909. doi: 10.1109/TGRS.2023.3275991.
|
[13] |
WAN Jinwei, CHEN Bo, XU Bin, et al. Convolutional neural networks for radar HRRP target recognition and rejection[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019(1): 5. doi: 10.1186/s13634-019-0603-y.
|
[14] |
胡明春, 王建明, 孙俊, 等. 雷达目标识别原理与实验技术[M]. 北京: 国防工业出版社, 2017: 12–13.
HU Mingchun, WANG Jianming, SUN Jun, et al. Principle and Experiments of Radar Target Recognition Technology[M]. Beijing: National Defense Industry Press, 2017: 12–13.
|
[15] |
CHEN Jian, XU Shiyou, and CHEN Zengping. Convolutional neural network for classifying space target of the same shape by using RCS time series[J]. IET Radar, Sonar & Navigation, 2018, 12(11): 1268–1275. doi: 10.1049/iet-rsn.2018.5237.
|
[16] |
CHEN Jian, XU Shiyou, HU Pengjiang, et al. Precession period extraction of axisymmetric space target from RCS sequence via convolutional neural network[C]. 2018 Progress in Electromagnetics Research Symposium (PIERS 2018), Toyama, Japan, 2018: 2077–2082. doi: 10.23919/PIERS.2018.8597685.
|
[17] |
TAX D M J and DUIN R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11/13): 1191–1199. doi: 10.1016/S0167-8655(99)00087-2.
|
[18] |
TAX D M J and DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45–66. doi: 10.1023/B:MACH.0000008084.60811.49.
|
[19] |
PARVIN H, ALIZADEH H, and MINAEI-BIDGOLI B. MKNN: Modified K-nearest neighbor[C]. The World Congress on Engineering and Computer Science 2008, San Francisco, USA, 2008.
|
[20] |
RUFF L, VANDERMEULEN R A, GÖRNITZ N, et al. Deep one-class classification[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 4393–4402.
|
[21] |
WIEDERER J, SCHMIDT J, KRESSEL U, et al. A benchmark for unsupervised anomaly detection in multi-agent trajectories[C]. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 2022: 130–137. doi: 10.1109/ITSC55140.2022.9922440.
|
[22] |
LEE K, MAJI S, RAVICHANDRAN A, et al. Meta-learning with differentiable convex optimization[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10649–10657. doi: 10.1109/CVPR.2019.01091.
|
[23] |
VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
|
[24] |
KOBAK D and LINDERMAN G C. Initialization is critical for preserving global data structure in both t-SNE and UMAP[J]. Nature Biotechnology, 2021, 39(2): 156–157. doi: 10.1038/s41587-020-00809-z.
|