Citation: | WANG Xue, MENG Shuyu, QIAN Zhihong. An Overview of Key Technologies for Intelligent Access Toward 6G Full-domain Convergence[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1613-1631. doi: 10.11999/JEIT231224 |
[1] |
钱志鸿, 肖琳, 王雪. 面向未来移动网络密集连接的关键技术综述[J]. 通信学报, 2021, 42(4): 22–43. doi: 10.11959/j.issn.1000-436x.2021094.
QIAN Zhihong, XIAO Lin, and WANG Xue. Review on strategic technology of dense connection for the future mobile network[J]. Journal on Communications, 2021, 42(4): 22–43. doi: 10.11959/j.issn.1000-436x.2021094.
|
[2] |
DAO N N, PHAM Q V, TU N H, et al. Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1193–1225. doi: 10.1109/COMST.2021.3059644.
|
[3] |
ITU. Statistics[EB/OL].https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx, 2022.
|
[4] |
周天清, 胡海琴, 曾新亮. NOMA-MEC系统中基于改进遗传算法的协作式计算卸载与资源管理[J]. 电子与信息学报, 2022, 44(9): 3014–3023. doi: 10.11999/JEIT220306.
ZHOU Tianqing, HU Haiqin, and ZENG Xinliang. Cooperative computation offloading and resource management based on improved genetic algorithm in NOMA-MEC systems[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3014–3023. doi: 10.11999/JEIT220306.
|
[5] |
吴巍. 天地一体化信息网络发展综述[J]. 天地一体化信息网络, 2020, 1(1): 1–16. doi: 10.11959/j.issn.2096-8930.20200101.
WU Wei. Survey on the development of space-integrated-ground information network[J]. Space-Integrated-Ground Information Networks, 2020, 1(1): 1–16. doi: 10.11959/j.issn.2096-8930.20200101.
|
[6] |
LIU Jiajia, SHI Yongpeng, FADLULLAH Z M, et al. Space-air-ground integrated network: A survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714–2741. doi: 10.1109/COMST.2018.2841996.
|
[7] |
袁祖霞, 程铭, 郭克锋. 基于上行非正交多址接入技术的星空地融合网络性能分析[J]. 电子与信息学报, 2022, 44(8): 2666–2676. doi: 10.11999/JEIT220379.
YUAN Zuxia, CHENG Ming, and GUO Kefeng. Performance analysis of satellite-aerial-terrestrial integrated network based on uplink NOMA technology[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2666–2676. doi: 10.11999/JEIT220379.
|
[8] |
GUO Yan, LI Qing, LI Yuanzhe, et al. Service coordination in the space-air-ground integrated network[J]. IEEE Network, 2021, 35(5): 168–173. doi: 10.1109/MNET.111.2100153.
|
[9] |
ITU. ITU-T NET2030 SUB. G1: 2020 Representative use cases and key network requirements for Network 2030[S]. Geneva: ITU, 2020.
|
[10] |
张平, 张建华, 戚琦, 等. Ubiquitous-X: 构建未来6G网络[J]. 中国科学:信息科学, 2020, 50(6): 913–930. doi: 10.1360/SSI-2020-0068.
ZHANG Ping, ZHANG Jianhua, QI Qi, et al. Ubiquitous-X: Constructing the future 6G networks[J]. Scientia Sinica Informationis, 2020, 50(6): 913–930. doi: 10.1360/SSI-2020-0068.
|
[11] |
中国移动通信有限公司研究院. 2030+技术趋势白皮书[R]. 2020.
China Mobile Communication Co., Ltd. 2030+ Technology trends white paper[R]. 2020.
|
[12] |
3GPP. Physical layer procedures for data V16.6. 0 (release 16)[R]. 3GPP TS 38.214, 2021.
|
[13] |
3GPP. Solutions for NR to support non-terrestrial networks (NTN) V1.0. 0 (release 16)[R]. 3GPP TR 38.821, 2019.
|
[14] |
周卫兵. 卫星网络资源管理与接入技术研究[D]. [硕士论文], 北京邮电大学, 2018.
ZHOU Weibing. Research of resource management and access technology based on satellite network[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2018.
|
[15] |
王爱玲, 刘建军, 潘成康, 等. 空天地一体化空口接入协议研究[J]. 移动通信, 2021, 45(5): 53–56. doi: 10.3969/j.issn.1006-1010.2021.05.009.
WANG Ailing, LIU Jianjun, PAN Chengkang, et al. Research on air interface access protocol of space-air-ground integrated networks[J]. Mobile Communications, 2021, 45(5): 53–56. doi: 10.3969/j.issn.1006-1010.2021.05.009.
|
[16] |
侯利明, 韩波, 缪德山, 等. 基于5G及演进的星地融合空口传输技术[J]. 信息通信技术与政策, 2021, 47(9): 21–29. doi: 10.12267/j.issn.2096-5931.2021.09.004.
HOU Liming, HAN Bo, MIAO Deshan, et al. Research of air-interface technologies for 5G based integrated satellite-terrestrial communication[J]. Information and Communications Technology and Policy, 2021, 47(9): 21–29. doi: 10.12267/j.issn.2096-5931.2021.09.004.
|
[17] |
LI Xiaoyang, ZHU Guangxu, GONG Yi, et al. Wirelessly powered data aggregation for IoT via over-the-air function computation: Beamforming and power control[J]. IEEE Transactions on Wireless Communications, 2019, 18(7): 3437–3452. doi: 10.1109/TWC.2019.2914046.
|
[18] |
李晓阳, 周梓钦, 贡毅. 通信感知计算一体化波束赋形设计[J]. 中兴通讯技术, 2022, 28(5): 23–28. doi: 10.12142/ZTETJ.202205006.
LI Xiaoyang, ZHOU Ziqin, and GONG Yi. Beamforming design for integrated sensing, communication and computation[J]. ZTE Technology Journal, 2022, 28(5): 23–28. doi: 10.12142/ZTETJ.202205006.
|
[19] |
SINGYA P K and ALOUINI M S. Performance of UAV-assisted multiuser terrestrial-satellite communication system over mixed FSO/RF channels[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 781–796. doi: 10.1109/taes.2021.3111787.
|
[20] |
JIA Ziye, SHENG Min, LI Jiandong, et al. Joint HAP access and LEO satellite backhaul in 6G: Matching game-based approaches[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 1147–1159. doi: 10.1109/JSAC.2020.3018824.
|
[21] |
HUANG Qingquan, LIN Min, ZHU Weiping, et al. Uplink massive access in mixed RF/FSO satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2413–2426. doi: 10.1109/TCOMM.2021.3049364.
|
[22] |
KONG Huaicong, LIN Min, ZHANG Jian, et al. Ergodic sum rate for uplink NOMA transmission in satellite-aerial-ground integrated networks[J]. Chinese Journal of Aeronautics, 2022, 35(9): 58–70. doi: 10.1016/j.cja.2021.10.039.
|
[23] |
CHUNG K. Correlated superposition coding: Lossless two-user NOMA implementation without SIC under user-fairness[J]. IEEE Wireless Communications Letters, 2021, 10(9): 1999–2003. doi: 10.1109/LWC.2021.3089996.
|
[24] |
PAN Zhipeng, LIU Wei, LIE Jing, et al. Multi-dimensional space-time block coding aided downlink MIMO-SCMA[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6657–6669. doi: 10.1109/TVT.2019.2915351.
|
[25] |
NIKOPOUR B, YI E, BAYESTEH H, et al. SCMA for downlink multiple access of 5G wireless networks[C]. 2014 IEEE Global Communications Conference, Austin, USA, 2014: 3940–3945. doi: 10.1109/GLOCOM.2014.7037423.
|
[26] |
LEI Hongjiang, ZHOU Sha, PARK K H, et al. Outage analysis of millimeter wave RSMA systems[J]. IEEE Transactions on Communications, 2023, 71(3): 1504–1520. doi: 10.1109/TCOMM.2023.3235349.
|
[27] |
CUI Mingyao and DAI Linglong. Channel estimation for extremely large-scale MIMO: Far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663–2677. doi: 10.1109/TCOMM.2022.3146400.
|
[28] |
WEI Xiuhong, DAI Linglong, ZHAO Yajun, et al. Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?[J]. China Communications, 2022, 19(6): 193–204. doi: 10.23919/JCC.2022.06.015.
|
[29] |
WU Zidong and DAI Linglong. Multiple access for near-field communications: SDMA or LDMA?[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(6): 1918–1935. doi: 10.1109/JSAC.2023.3275616.
|
[30] |
3GPP. Release 16 description; summary of rel-16 work items[R]. TR 21.906, 2021.
|
[31] |
LI Yuanjie, DAI Jincheng, SI Zhongwei, et al. Unsourced multiple access for 6G massive machine type communications[J]. China Communications, 2022, 19(3): 70–87. doi: 10.23919/JCC.2022.03.005.
|
[32] |
SBIT S, DADI M B and RHAIMI B C. Interference evaluation in cellular networks[J]. Wireless Personal Communications, 2018, 100(4): 1299–1311. doi: 10.1007/s11277-018-5637-1.
|
[33] |
ZHU Qiao, WANG Xue, QIAN Zhihong, et al. Performance analysis of an intelligent association scheme in ultra-dense networks using matern cluster process[C]. 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 2019: 140–145. doi: 10.1109/ICCChina.2019.8855839.
|
[34] |
YAO Yao, LI Bin, LI Cheng, et al. Downlink performance analysis of the full-duplex networks with interference cancellation[J]. IEEE Transactions on Communications, 2020, 68(4): 2324–2338. doi: 10.1109/TCOMM.2020.2965536.
|
[35] |
ALTAY C and KOCA M. Interference mitigation for non-orthogonal multiple access in heterogeneous networks[J]. Wireless Networks, 2023, 29(5): 2189–2202. doi: 10.1007/s11276-023-03274-z.
|
[36] |
张更新, 丁晓进, 曲至诚. 天地一体化物联网体系架构及干扰分析研究[J]. 天地一体化信息网络, 2020, 1(2): 22–33. doi: 10.11959/j.issn.2096-8930.20200204.
ZHANG Gengxin, DING Xiaojin, and QU Zhicheng. Research on space-based integrated internet of things architecture and interference analysis[J]. Space-Integrated-Ground Information Networks, 2020, 1(2): 22–33. doi: 10.11959/j.issn.2096-8930.20200204.
|
[37] |
ROIVAINEN A, YLITALO J, KYRÖLÄINEN J, et al. Performance of terrestrial network with the presence of overlay satellite network[C]. 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 2013: 5089–5093. doi: 10.1109/ICC.2013.6655389.
|
[38] |
贾敏, 孟士尧, 郭庆, 等. 低轨大规模卫星星座系统建模与干扰分析[J]. 太赫兹科学与电子信息学报, 2022, 20(1): 34–39. doi: 10.11805/TKYDA2021151.
JIA Min, MENG Shiyao, GUO Qing, et al. Analysis of inter-system interference of large-scale LEO satellite constellation[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(1): 34–39. doi: 10.11805/TKYDA2021151.
|
[39] |
DENG Ruoqi, DI Boya, ZHANG Hongliang, et al. Ultra-dense LEO satellite constellations: How many LEO satellites do we need?[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4843–4857. doi: 10.1109/TWC.2021.3062658.
|
[40] |
SONG Liang, HU Xing, ZHANG Guanhua, et al. Networking systems of AI: On the convergence of computing and communications[J]. IEEE Internet of Things Journal, 2022, 9(20): 20352–20381. doi: 10.1109/JIOT.2022.3172270.
|
[41] |
ZHANG Zhenjiang, ZHANG Wenyu, and TSENG F H. Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques[J]. IEEE Network, 2019, 33(1): 70–76. doi: 10.1109/MNET.2018.1800172.
|
[42] |
QIU CHAO, YAO Haipeng, YU F R, et al. Deep Q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5871–5883. doi: 10.1109/TVT.2019.2907682.
|
[43] |
LI Bin, FEI Zesong, and ZHANG Yan. UAV communications for 5G and beyond: Recent advances and future trends[J]. IEEE Internet of Things Journal, 2019, 6(2): 2241–2263. doi: 10.1109/JIOT.2018.2887086.
|
[44] |
XU Fangmin, YANG Fan, ZHAO Chenglin, et al. Deep Reinforcement learning based joint edge resource management in maritime network[J]. China Communications, 2020, 17(5): 211–222. doi: 10.23919/JCC.2020.05.016.
|
[45] |
JEONG S, SIMEONE O, and KANG J. Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2049–2063. doi: 10.1109/TVT.2017.2706308.
|
[46] |
CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789.
|
[47] |
ZHANG Long, ZHANG Hongliang, GUO Chao, et al. Satellite-aerial integrated computing in disasters: User association and offloading decision[C]. 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 554–559. doi: 10.1109/ICC40277.2020.9148796.
|
[48] |
ALSHAROA S and ALOUINI M A. Improvement of the global connectivity using integrated satellite-airborne-terrestrial networks with resource optimization[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5088–5100. doi: 10.1109/TWC.2020.2988917.
|
[49] |
崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1): 1–11. doi: 10.19665/j.issn1001-2400.2023.01.001.
CUI Xinyu, WU Jie, ZHOU Yiqing, et al. Challenges of and key technologies for the air-space-ground integrated network[J]. Journal of Xidian University, 2023, 50(1): 1–11. doi: 10.19665/j.issn1001-2400.2023.01.001.
|
[50] |
吴晓文, 焦侦丰, 凌翔, 等. 面向6G的卫星通信网络架构展望[J]. 电信科学, 2021, 37(7): 1–14. doi: 10.11959/j.issn.1000-0801.2021147.
WU Xiaowen, JIAO Zhenfeng, LING Xiang, et al. Outlook on satellite communications network architecture for 6G[J]. Telecommunications Science, 2021, 37(7): 1–14. doi: 10.11959/j.issn.1000-0801.2021147.
|
[51] |
XIAO Wenjing, WANG Rui, SONG J, et al. AI-based satellite ground communication system with intelligent antenna pointing[C]. Proceedings of GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2021: 1–6. doi: 10.1109/GLOBECOM42002.2020.9322562.
|
[52] |
ZHANG Sitong. Research on photoelectric effect for artificial satellite communication[C]. Proceedings of 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Exeter, UK, 2020: 1465–1469. doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00220.
|
[53] |
YANG Lixuan and ROSSI D. Quality monitoring and assessment of deployed deep learning models for network AIOps[J]. IEEE Network, 2021, 35(6): 84–90. doi: 10.1109/MNET.001.2100227.
|
[54] |
VÁZQUEZ M Á, HENAREJOS P, PAPPALARDO I, et al. Machine learning for satellite communications operations[J]. IEEE Communications Magazine, 2021, 59(2): 22–27. doi: 10.1109/MCOM.001.2000367.
|
[55] |
刘佩璋, 杨博, 刘江春, 等. 基于深度学习的卫星通信抗干扰方法[J]. 电子测试, 2020(1): 86–87. doi: 10.3969/j.issn.1000-8519.2020.01.030.
LIU Peizhang, YANG Bo, LIU Jiangchun, et al. Interference awareness method based on deep learning for satellite communication[J]. Electronic Test, 2020(1): 86–87. doi: 10.3969/j.issn.1000-8519.2020.01.030.
|
[56] |
孔景娜. 基于强化学习的卫星通信智能抗干扰决策探讨[J]. 无线互联科技, 2021, 18(5): 3–4. doi: 10.3969/j.issn.1672-6944.2021.05.002.
KONG Jingna. Research on intelligent anti-interference decision of satellite communication based on reinforcement learning[J]. Wireless Internet Technology, 2021, 18(5): 3–4. doi: 10.3969/j.issn.1672-6944.2021.05.002.
|
[57] |
段超凡, 王锐. 基于智能水滴算法的卫星信道资源调度研究[J]. 现代计算机, 2022, 28(7): 75–78,86. doi: 10.3969/j.issn.1007-1423.2022.07.013.
DUAN Chaofan and WANG Rui. Satellite channel allocation based on the intelligent water drops algorithm[J]. Modern Computer, 2022, 28(7): 75–78,86. doi: 10.3969/j.issn.1007-1423.2022.07.013.
|
[58] |
杨伟超, 杜宇, 文伟, 等. 基于多重分形谱智能分析的卫星信号调制识别研究[J]. 电子学报, 2022, 50(6): 1336–1343. doi: 10.12263/DZXB.20210882.
YANG Weichao, DU Yu, WEN Wei, et al. Modulation recognition of satellite communication signal based on intelligent analysis of multi-fractal spectrum[J]. Acta Electronica Sinica, 2022, 50(6): 1336–1343. doi: 10.12263/DZXB.20210882.
|
[59] |
EBERT J, BAILER W, FLAVIO J, et al. A method for ACM on Q/V-band satellite links based on artificial intelligence[C]. Proceedings of 2020 10th Advanced Satellite Multimedia Systems Conference and the 16th Signal Processing for Space Communications Workshop (ASMS/SPSC), Graz, Austria, 2020: 1–5. doi: 10.1109/ASMS/SPSC48805.2020.9268889.
|
[60] |
NGUYEN T M. Advanced mathematical modeling of machine learning and artificial intelligent addressing satellite transponder distortions[C]. Proceedings of 2020 IEEE Green Energy and Smart Systems Conference (IGESSC), Long Beach, USA, 2020: 1–6. doi: 10.1109/IGESSC50231.2020.9285157.
|
[61] |
OLIGERI G, SCIANCALEPORE S, RAPONI S, et al. PAST-AI: Physical-layer authentication of satellite transmitters via deep learning[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 274–289. doi: 10.1109/TIFS.2022.3219287.
|
[62] |
STHAPIT S, LAKSHMINARAYANA S, HE Ligang, et al. Reinforcement learning for security-aware computation offloading in satellite networks[J]. IEEE Internet of Things Journal, 2022, 9(14): 12351–12363. doi: 10.1109/JIOT.2021.3135632.
|
[63] |
LIU Qian, SHI Long, SUN Linlin, et al. Path planning for UAV-mounted mobile edge computing with deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5723–5728. doi: 10.1109/TVT.2020.2982508.
|
[64] |
DENG Boyu, JIANG Chunxiao, YAO Haipeng, et al. The next generation heterogeneous satellite communication networks: Integration of resource management and deep reinforcement learning[J]. IEEE Wireless Communications, 2020, 27(2): 105–111. doi: 10.1109/mwc.001.1900178.
|
[65] |
CAI Ting, YANG Zhihua, CHEN Yufei, et al. Cooperative data sensing and computation offloading in UAV-assisted crowdsensing with multi-agent deep reinforcement learning[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(5): 3197–3211. doi: 10.1109/TNSE.2021.3121690.
|
[66] |
HE Ying, WANG Yuhang, YU F R, et al. Efficient resource allocation for multi-beam satellite-terrestrial vehicular networks: A multi-agent actor-critic method with attention mechanism[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 2727–2738. doi: 10.1109/TITS.2021.3128209.
|
[67] |
JUNG S, YUN W J, KIM J, et al. Infrastructure-assisted cooperative multi-UAV deep reinforcement energy trading learning for big-data processing[C]. 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea, 2021: 159–162. doi: 10.1109/ICOIN50884.2021.9333895.
|
[68] |
杜瑞. AI在现代通信中的应用与挑战分析[J]. 信息通信, 2019(10): 166–167. doi: 10.3969/j.issn.1673-1131.2019.10.085.
DU Rui. Analysis of AI applications and challenges in modern communications[J]. Information & Communications, 2019(10): 166–167. doi: 10.3969/j.issn.1673-1131.2019.10.085.
|
[69] |
LETAIEF K B, CHEN Wei, SHI Yuanming, et al. The roadmap to 6G: AI empowered wireless networks[J]. IEEE Communications Magazine, 2019, 57(8): 84–90. doi: 10.1109/MCOM.2019.1900271.
|
[70] |
王雪, 刘京, 孙佳妮, 等. 基于谱聚类的异构蜂窝超密集网络高能效资源分配算法[J]. 通信学报, 2021, 42(7): 162–175. doi: 10.11959/j.issn.1000-436x.2021141.
WANG Xue, LIU Jing, SUN Jiani, et al. Spectral clustering-based energy-efficient resource allocation algorithm in heterogeneous cellular ultra-dense network[J]. Journal on Communications, 2021, 42(7): 162–175. doi: 10.11959/j.issn.1000-436x.2021141.
|
[71] |
WANG Xue, SHI Haotian, LI Yanqi, et al. Energy efficiency resource management for D2D-NOMA enabled network: A dinkelbach combined twin delayed deterministic policy gradient approach[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11756–11771. doi: 10.1109/TVT.2023.3267452.
|
[72] |
张平, 秦智超, 陆洲. 天地一体化信息网络天基宽带骨干互联系统初步考虑[J]. 中兴通讯技术, 2016, 22(4): 24–28. doi: 10.3969/j.issn.1009-6868.2016.04.005.
ZHANG Ping, QIN Zhichao, and LU Zhou. The space wideband backbone interconnected system in the integrated space and terrestrial information network[J]. ZTE Technology Journal, 2016, 22(4): 24–28. doi: 10.3969/j.issn.1009-6868.2016.04.005.
|
[73] |
田开波, 杨振, 张楠. 空天地一体化网络技术展望[J]. 中兴通讯技术, 2021, 27(5): 2–6. doi: 10.12142/ZTETJ.202105002.
TIAN Kaibo, YANG Zhen, and ZHANG Nan. Prospects for the air-space-ground integrated network technology[J]. ZTE Technology Journal, 2021, 27(5): 2–6. doi: 10.12142/ZTETJ.202105002.
|
[74] |
LIN Min, LIN Zhi, ZHU Weiping, et al. Joint beamforming for secure communication in cognitive satellite terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(5): 1017–1029. doi: 10.1109/JSAC.2018.2832819.
|
[75] |
ZHU Xiangming and JIANG Chunxiao. Integrated satellite-terrestrial networks toward 6G: Architectures, applications, and challenges[J]. IEEE Internet of Things Journal, 2022, 9(1): 437–461. doi: 10.1109/JIOT.2021.3126825.
|
[76] |
WANG H, CHEN S, AI M, et al. Localized mobility management for 5G ultra dense network[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8535–8552. doi: 10.1109/TVT.2017.2695799.
|
[77] |
SINGH V, UPADHYAY P K, and LIN Min. On the performance of NOMA-assisted overlay multiuser cognitive satellite-terrestrial networks[J]. IEEE Wireless Communications Letters, 2020, 9(5): 638–642. doi: 10.1109/LWC.2020.2963981.
|
[78] |
RUAN Yuhan, LI Yongzhao, WANG Chengxiang, et al. Energy efficient power allocation for delay constrained cognitive satellite terrestrial networks under interference constraints[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4957–4969. doi: 10.1109/TWC.2019.2931321.
|
[79] |
WEN Xiting, RUAN Yuhan, LI Yongzhao, et al. Optimal cooperative transmission for overlay cognitive satellite terrestrial networks[J]. IEEE Communications Letters, 2022, 26(2): 419–423. doi: 10.1109/LCOMM.2021.3131599.
|
[80] |
GUO Kefeng, WU Min, LI Xingwang, et al. Deep reinforcement learning and NOMA-based multi-objective RIS-assisted IS-UAV-TNs: Trajectory optimization and beamforming design[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 10197–10210. doi: 10.1109/TITS.2023.3267607.
|
[81] |
WANG Lei, LI Deren, CHEN Ruizhi, et al. Low earth orbiter (LEO) navigation augmentation: Opportunities and challenges[J]. Strategic Study of Chinese Academy of Engineering, 2020, 22(2): 144–152. doi: 10.15302/J-SSCAE-2020.02.018.
|
[82] |
YANG Yuanxi, MAO Yue, and SUN Bijiao. Basic performance and future developments of BeiDou global navigation satellite system[J]. Satellite Navigation, 2020, 1(1): 1. doi: 10.1186/s43020-019-0006-0.
|
[83] |
URLICHICH Y, KARUTIN S, TESTOEDOV N, et al. Directions 2021: GLONASS on the verge of a new decade[J]. GPS World, 2020, 31(12): 33–34.
|
[84] |
YANG Jian, LI Dezheng, JIANG Xiaofeng, et al. Enhancing the resilience of low earth orbit remote sensing satellite networks[J]. IEEE Network, 2020, 34(4): 304–311. doi: 10.1109/MNET.001.1900550.
|
[85] |
CHEN Long, TANG Feilong, LI Xu, et al. Delay-optimal cooperation transmission in remote sensing satellite networks[J]. IEEE Transactions on Mobile Computing, 2023, 22(9): 5109–5123. doi: 10.1109/TMC.2022.3172848.
|
[86] |
YANG Jie, WANG Xinlong, SHEN Liangliang, et al. Availability analysis of GNSS signals above GNSSs constellation[J]. Journal of Navigation, 2021, 74(2): 446–466. doi: 10.1017/S0373463320000594.
|
[87] |
MI Xinru, YANG Chungang, SONG Yanbo, et al. Matching game for intelligent resource management in integrated satellite-terrestrial networks[J]. IEEE Wireless Communications, 2022, 29(6): 88–94. doi: 10.1109/MWC.009.2100555.
|
[88] |
CHEN Danyang, YANG Chungang, and GONG Peng. Resource cube: Multi-virtual resource management for integrated satellite-terrestrial industrial IoT networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11963–11974. doi: 10.1109/TVT.2020.3007263.
|
[89] |
RE E, MURRELL A, and ROQUES D. Radio resource management for large constellations in a spectrum sharing environment[J]. International Journal of Satellite Communications and Networking, 2021, 39(1): 78–91. doi: 10.1002/sat.1376.
|
[90] |
YUAN Yifei, WANG Sen, WU Yongpeng, et al. NOMA for next-generation massive IoT: Performance potential and technology directions[J]. IEEE Communications Magazine, 2021, 59(7): 115–121. doi: 10.1109/MCOM.001.2000997.
|
[91] |
ZHANG Hongming, JIANG Chunxiao, WANG Jingjing, et al. Multicast beamforming optimization in cloud-based heterogeneous terrestrial and satellite networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1766–1776. doi: 10.1109/TVT.2019.2959933.
|
[92] |
YIN Zhisheng, CHENG Nan, LUAN T H, et al. Green interference based symbiotic security in integrated satellite-terrestrial communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9962–9973. doi: 10.1109/TWC.2022.3181277.
|
[93] |
KUSALADHARMA S, ZHU Weiping, AJIB W, et al. Achievable rate characterization of NOMA-aided cell-free massive MIMO with imperfect successive interference cancellation[J]. IEEE Transactions on Communications, 2021, 69(5): 3054–3066. doi: 10.1109/TCOMM.2021.3053613.
|
[94] |
BASHAR M, CUMANAN K, BURR A G, et al. On the performance of cell-free massive MIMO relying on adaptive NOMA/OMA mode-switching[J]. IEEE Transactions on Communications, 2020, 68(2): 792–810. doi: 10.1109/TCOMM.2019.2952574.
|
[95] |
SHARMA E, BUDHIRAJA R, VASUDEVAN K, et al. Full-duplex massive MIMO multi-pair two-way AF relaying: Energy efficiency optimization[J]. IEEE Transactions on Communications, 2018, 66(8): 3322–3340. doi: 10.1109/TCOMM.2018.2822273.
|
[96] |
VAEZI M, BADUGE G A, LIU Yuanwei, et al. Interplay between NOMA and other emerging technologies: A survey[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4): 900–919. doi: 10.1109/TCCN.2019.2933835.
|
[97] |
DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558.
|
[98] |
GAO Qiling, JIA Min, GUO Qing, et al. Jointly optimized beamforming and power allocation for full-duplex cell-free NOMA in space-ground integrated networks[J]. IEEE Transactions on Communications, 2023, 71(5): 2816–2830. doi: 10.1109/TCOMM.2023.3251342.
|
[99] |
LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
|
[100] |
CHENG Ziyang, HE Jinyang, SHI Shengnan, et al. Hybrid beamforming for wideband OFDM dual function radar communications[C]. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 8238–8242. doi: 10.1109/ICASSP39728.2021.9413497.
|
[101] |
LIU Fan and MASOUROS C. Hybrid beamforming with sub-arrayed MIMO radar: Enabling joint sensing and communication at mmWave band[C]. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 7770–7774. doi: 10.1109/ICASSP.2019.8683591.
|
[102] |
KAUSHIK A, MASOUROS C, and LIU Fan. Hardware efficient joint radar-communications with hybrid precoding and RF chain optimization[C]. ICC 2021 - IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6. doi: 10.1109/ICC42927.2021.9500661.
|
[103] |
ABEBE A T and KANG C G. Multiple codebook-based non-orthogonal multiple access[J]. IEEE Wireless Communications Letters, 2020, 9(5): 683–687. doi: 10.1109/LWC.2020.2965939.
|
[104] |
YUAN Weijie, WU Nan, ZHANG A, et al. Iterative receiver design for FTN signaling aided sparse code multiple access[J]. IEEE Transactions on Wireless Communications, 2020, 19(2): 915–928. doi: 10.1109/TWC.2019.2950000.
|
[105] |
RAMÍREZ T and MOSQUERA C. Contribution of NOMA signalling to practical multibeam satellite deployments[C]. 2022 11th Advanced Satellite Multimedia Systems Conference and the 17th Signal Processing for Space Communications Workshop (ASMS/SPSC), Graz, Austria, 2022: 1–8. doi: 10.1109/ASMS/SPSC55670.2022.9914692.
|
[106] |
LIU Rui, GUO Kefeng, KANG An, et al. Resource allocation for cognitive satellite-HAP-terrestrial networks with non-orthogonal multiple access[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9659–9663. doi: 10.1109/TVT.2023.3252642.
|
[107] |
WANG Xianbin, MEI Jie, CUI Shuguang, et al. Realizing 6G: The operational goals, enabling technologies of future networks, and value-oriented intelligent multi-dimensional multiple access[J]. IEEE Network, 2023, 37(1): 10–17. doi: 10.1109/MNET.001.2200429.
|
[108] |
MEI Jie, HAN Wudan, WANG Xianbin, et al. Multi-dimensional multiple access with resource utilization cost awareness for individualized service provisioning in 6G[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(4): 1237–1252. doi: 10.1109/JSAC.2022.3145909.
|
[109] |
LIU Jun, DU Xinqi, CUI Junhong, et al. Task-oriented intelligent networking architecture for the space–air–ground–aqua integrated network[J]. IEEE Internet of Things Journal, 2020, 7(6): 5345–5358. doi: 10.1109/JIOT.2020.2977402.
|
[110] |
ZHAO Ming, CHEN Chen, LIU Lei, et al. Orbital collaborative learning in 6G space-air-ground integrated networks[J]. Neurocomputing, 2022, 497: 94–109. doi: 10.1016/j.neucom.2022.04.098.
|