Citation: | REN Liqiang, JIA Shuyi, WANG Haipeng, WANG Ziling. A Review of Research on Time Series Classification Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3094-3116. doi: 10.11999/JEIT231222 |
[1] |
YANG Qiang and WU Xindong. 10 Challenging problems in data mining research[J]. International Journal of Information Technology & Decision Making, 2006, 5(4): 597–604. doi: 10.1142/S0219622006002258.
|
[2] |
BAGNALL A, LINES J, BOSTROM A, et al. The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Knowledge Discovery, 2017, 31(3): 606–660. doi: 10.1007/s10618-016-0483-9.
|
[3] |
ZHANG Shibo, LI Yaxuan, ZHANG Shen, et al. Deep learning in human activity recognition with wearable sensors: A review on advances[J]. Sensors, 2022, 22(4): 1476. doi: 10.3390/s22041476.
|
[4] |
CHEN Kaixuan, ZHANG Dalin, YAO Lina, et al. Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities[J]. ACM Computing Surveys, 2022, 54(4): 77. doi: 10.1145/3447744.
|
[5] |
KHADEMI Z, EBRAHIMI F, and KORDY H M. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals[J]. Computers in Biology and Medicine, 2022, 143: 105288. doi: 10.1016/j.compbiomed.2022.105288.
|
[6] |
ABANDA A, MORI U, and LOZANO J A. A review on distance based time series classification[J]. Data Mining and Knowledge Discovery, 2019, 33(2): 378–412. doi: 10.1007/s10618-018-0596-4.
|
[7] |
DAU H A, BAGNALL A, KAMGAR K, et al. The UCR time series archive[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1293–1305. doi: 10.1109/JAS.2019.1911747.
|
[8] |
BAGNALL A, DAU H A, LINES J, et al. The UEA multivariate time series classification archive, 2018[EB/OL]. https://arxiv.org/abs/1811.00075, 2018.
|
[9] |
ISMAIL FAWAZ H, LUCAS B, FORESTIER G, et al. Inceptiontime: Finding alexnet for time series classification[J]. Data Mining and Knowledge Discovery, 2020, 34(6): 1936–1962. doi: 10.1007/s10618-020-00710-y.
|
[10] |
ISMAIL FAWAZ H, FORESTIER G, WEBER J, et al. Deep learning for time series classification: A review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917–963. doi: 10.1007/s10618-019-00619-1.
|
[11] |
WANG Zhiguang, YAN Weizhong, and OATES T. Time series classification from scratch with deep neural networks: A strong baseline[C]. 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, USA, 2017: 1578–1585. doi: 10.1109/IJCNN.2017.7966039.
|
[12] |
ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]. The 35th AAAI Conference on Artificial Intelligence, 2021: 11106–11115. doi: 10.1609/aaai.v35i12.17325.
|
[13] |
WEN Qingsong, ZHOU Tian, ZHANG Chaoli, et al. Transformers in time series: A survey[J]. Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, Macao, China, 2022: 6778–6795. doi: 10.24963/ijcai.2023/759.
|
[14] |
HAO Yifan and CAO Huiping. A new attention mechanism to classify multivariate time series[C]. The Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 2020: 1999–2005. doi: 10.24963/ijcai.2020/277.
|
[15] |
ZERVEAS G, JAYARAMAN S, PATEL D, et al. A transformer-based framework for multivariate time series representation learning[C]. The 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 2114–2124. doi: 10.1145/3447548.3467401.
|
[16] |
SERRA J, PASCUAL S, and KARATZOGLOU A. Towards a universal neural network encoder for time series[C]. Artificial Intelligence Research and Development - Current Challenges, New Trends and Applications, CCIA 2018, 21st International Conference of the Catalan Association for Artificial Intelligence, Alt Empordà, Spain, 2018: 120–129. doi: 10.3233/978-1-61499-918-8-120.
|
[17] |
BANERJEE D, ISLAM K, XUE Keyi, et al. A deep transfer learning approach for improved post-traumatic stress disorder diagnosis[J]. Knowledge and Information Systems, 2019, 60(3): 1693–1724. doi: 10.1007/s10115-019-01337-2.
|
[18] |
ASWOLINSKIY W, REINHART R F, and STEIL J. Time series classification in reservoir-and model-space[J]. Neural Processing Letters, 2018, 48(2): 789–809. doi: 10.1007/s11063-017-9765-5.
|
[19] |
IWANA B K, FRINKEN V, and UCHIDA S. DTW-NN: A novel neural network for time series recognition using dynamic alignment between inputs and weights[J]. Knowledge-Based Systems, 2020, 188: 104971. doi: 10.1016/j.knosys.2019.104971.
|
[20] |
TABASSUM N, MENON S, and JASTRZĘBSKA A. Time-series classification with SAFE: Simple and fast segmented word embedding-based neural time series classifier[J]. Information Processing & Management, 2022, 59(5): 103044. doi: 10.1016/j.ipm.2022.103044.
|
[21] |
FUKUSHIMA K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193–202. doi: 10.1007/BF00344251.
|
[22] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
[23] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
|
[24] |
LE GUENNEC A, MALINOWSKI S, and TAVENARD R. Data augmentation for time series classification using convolutional neural networks[C]. ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Riva Del Garda, Italy, 2016.
|
[25] |
LI Zewen, LIU Fan, YANG Wenjie, et al. A survey of convolutional neural networks: Analysis, applications, and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 6999–7019. doi: 10.1109/TNNLS.2021.3084827.
|
[26] |
ZHENG Yi, LIU Qi, CHEN Enhong, et al. Time series classification using multi-channels deep convolutional neural networks[C]. 15th International Conference on Web-Age Information Management, Macau, China, 2014: 298–310. doi: 10.1007/978-3-319-08010-9_33.
|
[27] |
YANG Jianbo, NGUYEN M N, SAN P P, et al. Deep convolutional neural networks on multichannel time series for human activity recognition[C]. The Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 3995–4001.
|
[28] |
ZHAO Bendong, LU Huanzhang, CHEN Shangfeng, et al. Convolutional neural networks for time series classification[J]. Journal of Systems Engineering and Electronics, 2017, 28(1): 162–169. doi: 10.21629/JSEE.2017.01.18.
|
[29] |
LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440. doi: 10.1109/CVPR.2015.7298965.
|
[30] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[31] |
ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2921–2929. doi: 10.1109/CVPR.2016.319.
|
[32] |
ZOU Xiaowu, WANG Zidong, LI Qi, et al. Integration of residual network and convolutional neural network along with various activation functions and global pooling for time series classification[J]. Neurocomputing, 2019, 367: 39–45. doi: 10.1016/j.neucom.2019.08.023.
|
[33] |
LI Yuhong, ZHANG Xiaofan, and CHEN Deming. CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1091–1100. doi: 10.1109/CVPR.2018.00120.
|
[34] |
YAZDANBAKHSH O and DICK S. Multivariate time series classification using dilated convolutional neural network[EB/OL]. https://arxiv.org/abs/1905.01697, 2019.
|
[35] |
FOUMANI S N M, TAN C W, and SALEHI M. Disjoint-CNN for multivariate time series classification[C]. 2021 International Conference on Data Mining Workshops (ICDMW), Auckland, New Zealand, 2021: 760–769. doi: 10.1109/ICDMW53433.2021.00099.
|
[36] |
WANG Zhiguang and OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[C]. AAAI Workshop Papers 2015, Menlo Park, USA, 2015: 40–46.
|
[37] |
HATAMI N, GAVET Y, and DEBAYLE J. Classification of time-series images using deep convolutional neural networks[C]. SPIE 10696, Tenth International Conference on Machine Vision, Vienna, Austria, 2018: 106960Y. doi: 10.1117/12.2309486.
|
[38] |
KARIMI-BIDHENDI S, MUNSHI F, and MUNSHI A. Scalable classification of univariate and multivariate time series[C]. 2018 IEEE International Conference on Big Data (Big Data), Seattle, USA, 2018: 1598–1605. doi: 10.1109/BigData.2018.8621889.
|
[39] |
YANG C L, CHEN Zhixuan, and YANG Chenyi. Sensor classification using convolutional neural network by encoding multivariate time series as two-dimensional colored images[J]. Sensors, 2019, 20(1): 168. doi: 10.3390/s20010168.
|
[40] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
|
[41] |
CHEN Wei and SHI Ke. A deep learning framework for time series classification using relative position matrix and convolutional neural network[J]. Neurocomputing, 2019, 359: 384–394. doi: 10.1016/j.neucom.2019.06.032.
|
[42] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015. doi: 10.48550/arXiv.1409.1556.
|
[43] |
CUI Zhicheng, CHEN Wenlin, and CHEN Yixin. Multi-scale convolutional neural networks for time series classification[EB/OL]. https://arxiv.org/abs/1603.06995, 2016.
|
[44] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
|
[45] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. The 31th AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284. doi: 10.1609/aaai.v31i1.11231.
|
[46] |
LIU C L, HSAIO W H, and TU Y C. Time series classification with multivariate convolutional neural network[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4788–4797. doi: 10.1109/TIE.2018.2864702.
|
[47] |
RONALD M, POULOSE A, and HAN D S. iSPLInception: An inception-ResNet deep learning architecture for human activity recognition[J]. IEEE Access, 2021, 9: 68985–69001. doi: 10.1109/ACCESS.2021.3078184.
|
[48] |
SUN Jingyu, TAKEUCHI S, and YAMASAKI I. Prototypical inception network with cross branch attention for time series classification[C]. 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 2021: 1–7. doi: 10.1109/IJCNN52387.2021.9533440.
|
[49] |
USMANKHUJAEV S, IBROKHIMOV B, BAYDADAEV S, et al. Time series classification with InceptionFCN[J]. Sensors, 2021, 22(1): 157. doi: 10.3390/s22010157.
|
[50] |
张雅雯, 王志海, 刘海洋, 等. 基于多尺度残差FCN的时间序列分类算法[J]. 软件学报, 2022, 33(2): 555–570. doi: 10.13328/j.cnki.jos.006142.
ZHANG Yawen, WANG Zhihai, LIU Haiyang, et al. Time series classification algorithm based on multiscale residual full convolutional neural network[J]. Journal of Software, 2022, 33(2): 555–570. doi: 10.13328/j.cnki.jos.006142.
|
[51] |
DENNIS D, ACAR D A E, MANDIKAL V, et al. Shallow RNN: Accurate time-series classification on resource constrained devices[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 12896–12906.
|
[52] |
HERMANS M and SCHRAUWEN B. Training and analyzing deep recurrent neural networks[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 190–198.
|
[53] |
PASCANU R, MIKOLOV T, and BENGIO Y. On the difficulty of training recurrent neural networks[C]. The 30th International Conference on International Conference on Machine Learning, Atlanta, USA, 2013: 1310–1318.
|
[54] |
HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735.
|
[55] |
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. https://arxiv.org/abs/1412.3555, 2014.
|
[56] |
KAWAKAMI K. Supervised sequence labelling with recurrent neural networks[D]. [Ph. D. dissertation], Carnegie Mellon University, 2008.
|
[57] |
SUTSKEVER I, VINYALS O, and LE Q V. Sequence to sequence learning with neural networks[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 3104–3112.
|
[58] |
DONAHUE J, ANNE HENDRICKS L, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2625–2634. doi: 10.1109/CVPR.2015.7298878.
|
[59] |
KARPATHY A and Fei-Fei L. Deep visual-semantic alignments for generating image descriptions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3128–3137. doi: 10.1109/CVPR.2015.7298932.
|
[60] |
TANG Yujin, XU Jianfeng, MATSUMOTO K, et al. Sequence-to-sequence model with attention for time series classification[C]. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 2016: 503–510. doi: 10.1109/ICDMW.2016.0078.
|
[61] |
MALHOTRA P, TV V, VIG L, et al. TimeNet: Pre-trained deep recurrent neural network for time series classification[C]. 25th European Symposium on Artificial Neural Networks, Bruges, Belgium, 2017.
|
[62] |
KARIM F, MAJUMDAR S, DARABI H, et al. Multivariate LSTM-FCNs for time series classification[J]. Neural Networks, 2019, 116: 237–245. doi: 10.1016/j.neunet.2019.04.014.
|
[63] |
玄英律, 万源, 陈嘉慧. 基于多尺度卷积和注意力机制的LSTM时间序列分类[J]. 计算机应用, 2022, 42(8): 2343–2352. doi: 10.11772/j.issn.1001-9081.2021061062.
XUAN Yinglu, WAN Yuan, and CHEN Jiahui. Time series classification by LSTM based on multi-scale convolution and attention mechanism[J]. Journal of Computer Applications, 2022, 42(8): 2343–2352. doi: 10.11772/j.issn.1001-9081.2021061062.
|
[64] |
ZHANG Xuchao, GAO Yifeng, LIN J, et al. TapNet: Multivariate time series classification with attentional prototypical network[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 6845–6852. doi: 10.1609/aaai.v34i04.6165.
|
[65] |
ZUO Jingwei, ZEITOUNI K, and TAHER Y. SMATE: Semi-supervised spatio-temporal representation learning on multivariate time series[C]. 2021 IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand, 2021: 1565–1570. doi: 10.1109/ICDM51629.2021.00206.
|
[66] |
LIN Sangdi and RUNGER G C. GCRNN: Group-constrained convolutional recurrent neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4709–4718. doi: 10.1109/TNNLS.2017.2772336.
|
[67] |
MUTEGEKI R and HAN D S. A CNN-LSTM approach to human activity recognition[C]. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 2020: 362–366. doi: 10.1109/ICAIIC48513.2020.9065078.
|
[68] |
KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2018, 6: 1662–1669. doi: 10.1109/ACCESS.2017.2779939.
|
[69] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[70] |
DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]. The 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1, Minneapolis, USA, 2018: 4171–4186. doi: 10.18653/v1/N19-1423.
|
[71] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
|
[72] |
CARON M, TOUVRON H, MISRA I, et al. Emerging properties in self-supervised vision transformers[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9630–9640. doi: 10.1109/ICCV48922.2021.00951.
|
[73] |
KHAN S, NASEER M, HAYAT M, et al. Transformers in vision: A survey[J]. ACM Computing Surveys, 2022, 54(10s): 200. doi: 10.1145/3505244.
|
[74] |
KOSTAS D, AROCA-OUELLETTE S, and RUDZICZ F. BENDR: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data[J]. Frontiers in Human Neuroscience, 2021, 15: 653659. doi: 10.3389/fnhum.2021.653659.
|
[75] |
BAHDANAU D, CHO K, and BENGIO Y. Neural machine translation by jointly learning to align and translate[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015. doi: 10.48550/arXiv.1409.0473.
|
[76] |
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. The 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014: 1724–1734. doi: 10.3115/v1/D14-1179.
|
[77] |
LUONG M T, PHAM H, and MANNING C D. Effective approaches to attention-based neural machine translation[C]. The 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 2015: 1412–1421. doi: 10.18653/v1/D15-1166.
|
[78] |
YUAN Ye, XUN Guangxu, MA Fenglong, et al. MuVAN: A multi-view attention network for multivariate temporal data[C]. 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 2018: 717–726. doi: 10.1109/ICDM.2018.00087.
|
[79] |
HSIEH T Y, WANG Suhang, SUN Yiwei, et al. Explainable multivariate time series classification: A deep neural network which learns to attend to important variables as well as time intervals[C]. The 14th ACM International Conference on Web Search and Data Mining, 2021: 607–615.
|
[80] |
CHEN Wei and SHI Ke. Multi-scale attention convolutional neural network for time series classification[J]. Neural Networks, 2021, 136: 126–140. doi: 10.1016/j.neunet.2021.01.001.
|
[81] |
YUAN Ye, XUN Guangxu, MA Fenglong, et al. A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning[C]. 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, USA, 2018: 206–209. doi: 10.1109/BHI.2018.8333405.
|
[82] |
LIANG Yuxuan, KE Songyu, ZHANG Junbo, et al. GeoMAN: Multi-level attention networks for geo-sensory time series prediction[C]. The Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 3428–3434. doi: 10.24963/ijcai.2018/476.
|
[83] |
HU Jun and ZHENG Wendong. Multistage attention network for multivariate time series prediction[J]. Neurocomputing, 2020, 383: 122–137. doi: 10.1016/j.neucom.2019.11.060.
|
[84] |
CHENG Xu, HAN Peihua, LI Guoyuan, et al. A novel channel and temporal-wise attention in convolutional networks for multivariate time series classification[J]. IEEE Access, 2020, 8: 212247–212257. doi: 10.1109/ACCESS.2020.3040515.
|
[85] |
XIAO Zhiwen, XU Xin, XING Huanlai, et al. RTFN: A robust temporal feature network for time series classification[J]. Information Sciences, 2021, 571: 65–86. doi: 10.1016/j.ins.2021.04.053.
|
[86] |
JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2017–2025.
|
[87] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
[88] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
|
[89] |
SONG Huan, RAJAN D, THIAGARAJAN J, et al. Attend and diagnose: Clinical time series analysis using attention models[C]. The AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 4091–4098. doi: 10.1609/aaai.v32i1.11635.
|
[90] |
JIN Cancan and CHEN Xi. An end-to-end framework combining time–frequency expert knowledge and modified transformer networks for vibration signal classification[J]. Expert Systems with Applications, 2021, 171: 114570. doi: 10.1016/j.eswa.2021.114570.
|
[91] |
ALLAM JR T and MCEWEN J D. Paying attention to astronomical transients: Photometric classification with the time-series transformer[EB/OL]. https://arxiv.org/abs/2105.06178v1, 2021.
|
[92] |
RASMUSSEN C E. Gaussian processes in machine learning[M]. ML Summer Schools 2003 on Advanced Lectures on Machine Learning, Tübingen, Germany, 2003: 63–71. doi: 10.1007/978-3-540-28650-9_4.
|
[93] |
LIU Minghao, REN Shengqi, MA Siyuan, et al. Gated transformer networks for multivariate time series classification[EB/OL]. https://arxiv.org/abs/2103.14438, 2021.
|
[94] |
ZHAO Bowen, XING Huanlai, WANG Xinhan, et al. Rethinking attention mechanism in time series classification[J]. Information Sciences, 2023, 627: 97–114. doi: 10.1016/j.ins.2023.01.093.
|
[95] |
王美, 苏雪松, 刘佳, 等. 时频域多尺度交叉注意力融合的时间序列分类方法[J/OL]. 计算机应用: 1–9. http://www.joca.cn/CN/10.11772/j.issn.1001-9081.2023060731, 2023.
WANG Mei, SU Xuesong, LIU Jia, et al. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain[J/OL]. Journal of Computer Applications: 1–9. http://www.joca.cn/CN/10.11772/j.issn.1001-9081.2023060731, 2023.
|
[96] |
YANG C H H, TSAI Y Y, and CHEN P Y. Voice2Series: Reprogramming acoustic models for time series classification[C]. The 38th International Conference on Machine Learning, 2021: 11808–11819.
|
[97] |
SUN Chenxi, LI Yaliang, LI Hongyan, et al. TEST: Text prototype aligned embedding to activate LLM's ability for time series[EB/OL]. https://arxiv.org/abs/2308.08241, 2023.
|
[98] |
CHANG C, PENG W C, and CHEN T F. LLM4TS: Two-stage fine-tuning for time-series forecasting with pre-trained LLMs[EB/OL]. https://arxiv.org/abs/2308.08469, 2023.
|
[99] |
CHOWDHURY R R, ZHANG Xiyuan, SHANG Jingbo, et al. TARNet: Task-aware reconstruction for time-series transformer[C]. The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, USA, 2022: 212–220. doi: 10.1145/3534678.3539329.
|
[100] |
GUPTA N, GUPTA S K, PATHAK R K, et al. Human activity recognition in artificial intelligence framework: A narrative review[J]. Artificial Intelligence Review, 2022, 55(6): 4755–4808. doi: 10.1007/s10462-021-10116-x.
|
[101] |
ORDÓÑEZ F J and ROGGEN D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1): 115. doi: 10.3390/s16010115.
|
[102] |
ARSHAD M H, BILAL M, and GANI A. Human activity recognition: Review, taxonomy and open challenges[J]. Sensors, 2022, 22(17): 6463. doi: 10.3390/s22176463.
|
[103] |
LI Yang, YANG Guanci, SU Zhidong, et al. Human activity recognition based on multienvironment sensor data[J]. Information Fusion, 2023, 91: 47–63. doi: 10.1016/j.inffus.2022.10.015.
|
[104] |
CHENG Xin, ZHANG Lei, TANG Yin, et al. Real-time human activity recognition using conditionally parametrized convolutions on mobile and wearable devices[J]. IEEE Sensors Journal, 2022, 22(6): 5889–5901. doi: 10.1109/JSEN.2022.3149337.
|
[105] |
LARA O D and LABRADOR M A. A survey on human activity recognition using wearable sensors[J]. IEEE Communications Surveys & Tutorials, 2013, 15(3): 1192–1209. doi: 10.1109/SURV.2012.110112.00192.
|
[106] |
WANG Xing, ZHANG Lei, HUANG Wenbo, et al. Deep convolutional networks with tunable speed–accuracy tradeoff for human activity recognition using wearables[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1–12. doi: 10.1109/TIM.2021.3132088.
|
[107] |
RONAO C A and CHO S B. Human activity recognition with smartphone sensors using deep learning neural networks[J]. Expert Systems with Applications, 2016, 59: 235–244. doi: 10.1016/j.eswa.2016.04.032.
|
[108] |
IGNATOV A. Real-time human activity recognition from accelerometer data using convolutional neural networks[J]. Applied Soft Computing, 2018, 62: 915–922. doi: 10.1016/j.asoc.2017.09.027.
|
[109] |
ZENG Ming, NGUYEN L T, YU Bo, et al. Convolutional neural networks for human activity recognition using mobile sensors[C]. 6th International Conference on Mobile Computing, Applications and Services, Austin, USA, 2014: 197–205. doi: 10.4108/icst.mobicase.2014.257786.
|
[110] |
ZHANG Haoxi, XIAO Zhiwen, WANG Juan, et al. A novel IoT-perceptive human activity recognition (HAR) approach using multihead convolutional attention[J]. IEEE Internet of Things Journal, 2020, 7(2): 1072–1080. doi: 10.1109/JIOT.2019.2949715.
|
[111] |
JIANG Wenchao and YIN Zhaozheng. Human activity recognition using wearable sensors by deep convolutional neural networks[C]. The 23rd ACM international conference on Multimedia, Brisbane, Australia, 2015: 1307–1310. doi: 10.1145/2733373.2806333.
|
[112] |
LEE S M, YOON S M, and CHO H. Human activity recognition from accelerometer data using convolutional neural network[C]. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea, 2017: 131–134. doi: 10.1109/BIGCOMP.2017.7881728.
|
[113] |
XU Shige, ZHANG Lei, HUANG Wenbo, et al. Deformable convolutional networks for multimodal human activity recognition using wearable sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1–14. doi: 10.1109/TIM.2022.3158427.
|
[114] |
MURAD A and PYUN J Y. Deep recurrent neural networks for human activity recognition[J]. Sensors, 2017, 17(11): 2556. doi: 10.3390/s17112556.
|
[115] |
ZENG Ming, GAO Haoxiang, YU Tong, et al. Understanding and improving recurrent networks for human activity recognition by continuous attention[C]. The 2018 ACM International Symposium on Wearable Computers, Singapore, 2018: 56–63. doi: 10.1145/3267242.3267286.
|
[116] |
GUAN Yu and PLÖTZ T. Ensembles of deep LSTM learners for activity recognition using wearables[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(2): 11. doi: 10.1145/3090076.
|
[117] |
SINGH S P, SHARMA M K, LAY-EKUAKILLE A, et al. Deep ConvLSTM with self-attention for human activity decoding using wearable sensors[J]. IEEE Sensors Journal, 2021, 21(6): 8575–8582. doi: 10.1109/JSEN.2020.3045135.
|
[118] |
CHALLA S K, KUMAR A, and SEMWAL V B. A multibranch CNN-BiLSTM model for human activity recognition using wearable sensor data[J]. The Visual Computer, 2022, 38(12): 4095–4109. doi: 10.1007/s00371-021-02283-3.
|
[119] |
NAFEA O, ABDUL W, MUHAMMAD G, et al. Sensor-based human activity recognition with spatio-temporal deep learning[J]. Sensors, 2021, 21(6): 2141. doi: 10.3390/s21062141.
|
[120] |
MEKRUKSAVANICH S and JITPATTANAKUL A. LSTM networks using smartphone data for sensor-based human activity recognition in smart homes[J]. Sensors, 2021, 21(5): 1636. doi: 10.3390/s21051636.
|
[121] |
CHEN Ling, LIU Xiaoze, PENG Liangying, et al. Deep learning based multimodal complex human activity recognition using wearable devices[J]. Applied Intelligence, 2021, 51(6): 4029–4042. doi: 10.1007/s10489-020-02005-7.
|
[122] |
MEKRUKSAVANICH S and JITPATTANAKUL A. Biometric user identification based on human activity recognition using wearable sensors: An experiment using deep learning models[J]. Electronics, 2021, 10(3): 308. doi: 10.3390/electronics10030308.
|
[123] |
SALEEM G, BAJWA U I and RAZA R H. Toward human activity recognition: A survey[J]. Neural Computing and Applications, 2023, 35(5): 4145–4182. doi: 10.1007/s00521-022-07937-4.
|
[124] |
MEKRUKSAVANICH S and JITPATTANAKUL A. Deep convolutional neural network with RNNs for complex activity recognition using wrist-worn wearable sensor data[J]. Electronics, 2021, 10(14): 1685. doi: 10.3390/electronics10141685.
|
[125] |
CHEN Xun, LI Chang, LIU Aiping, et al. Toward open-world electroencephalogram decoding via deep learning: A comprehensive survey[J]. IEEE Signal Processing Magazine, 2022, 39(2): 117–134. doi: 10.1109/MSP.2021.3134629.
|
[126] |
GU Xiaoqing, CAI Weiwei, GAO Ming, et al. Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition[J]. IEEE Transactions on Computational Social Systems, 2022, 9(6): 1604–1612. doi: 10.1109/TCSS.2022.3153660.
|
[127] |
MAITHRI M, RAGHAVENDRA U, GUDIGAR A, et al. Automated emotion recognition: Current trends and future perspectives[J]. Computer Methods and Programs in Biomedicine, 2022, 215: 106646. doi: 10.1016/j.cmpb.2022.106646.
|
[128] |
CHEN Yu, CHANG Rui, and GUO Jifeng. Effects of data augmentation method borderline-SMOTE on emotion recognition of EEG signals based on convolutional neural network[J]. IEEE Access, 2021, 9: 47491–47502. doi: 10.1109/ACCESS.2021.3068316.
|
[129] |
GAO Zhongke, LI Yanli, YANG Yuxuan, et al. A GPSO-optimized convolutional neural networks for EEG-based emotion recognition[J]. Neurocomputing, 2020, 380: 225–235. doi: 10.1016/j.neucom.2019.10.096.
|
[130] |
MAHESHWARI D, GHOSH S K, TRIPATHY R K, et al. Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals[J]. Computers in Biology and Medicine, 2021, 134: 104428. doi: 10.1016/j.compbiomed.2021.104428.
|
[131] |
WANG Yuqi, ZHANG Lijun, XIA Pan, et al. EEG-based emotion recognition using a 2D CNN with different kernels[J]. Bioengineering, 2022, 9(6): 231. doi: 10.3390/bioengineering9060231.
|
[132] |
KHARE S K and BAJAJ V. Time–frequency representation and convolutional neural network-based emotion recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(7): 2901–2909. doi: 10.1109/TNNLS.2020.3008938.
|
[133] |
ALGARNI M, SAEED F, AL-HADHRAMI T, et al. Deep learning-based approach for emotion recognition using electroencephalography (EEG) signals using bi-directional long short-term memory (Bi-LSTM)[J]. Sensors, 2022, 22(8): 2976. doi: 10.3390/s22082976.
|
[134] |
SHARMA R, PACHORI R B, and SIRCAR P. Automated emotion recognition based on higher order statistics and deep learning algorithm[J]. Biomedical Signal Processing and Control, 2020, 58: 101867. doi: 10.1016/j.bspc.2020.101867.
|
[135] |
LI Yang, ZHENG Wenming, WANG Lei, et al. From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition[J]. IEEE Transactions on Affective Computing, 2022, 13(2): 568–578. doi: 10.1109/TAFFC.2019.2922912.
|
[136] |
XIAO Guowen, SHI Meng, YE Mengwen, et al. 4D attention-based neural network for EEG emotion recognition[J]. Cognitive Neurodynamics, 2022, 16(4): 805–818. doi: 10.1007/s11571-021-09751-5.
|
[137] |
KANG J S, KAVURI S, and LEE M. ICA-evolution based data augmentation with ensemble deep neural networks using time and frequency kernels for emotion recognition from EEG-data[J]. IEEE Transactions on Affective Computing, 2022, 13(2): 616–627. doi: 10.1109/TAFFC.2019.2942587.
|
[138] |
IYER A, DAS S S, TEOTIA R, et al. CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings[J]. Multimedia Tools and Applications, 2023, 82(4): 4883–4896. doi: 10.1007/s11042-022-12310-7.
|
[139] |
KIM Y and CHOI A. EEG-based emotion classification using long short-term memory network with attention mechanism[J]. Sensors, 2020, 20(23): 6727. doi: 10.3390/s20236727.
|
[140] |
ARJUN, RAJPOOT A S, and PANICKER M R. Subject independent emotion recognition using EEG signals employing attention driven neural networks[J]. Biomedical Signal Processing and Control, 2022, 75: 103547. doi: 10.1016/j.bspc.2022.103547.
|
[141] |
LIANG Zhen, ZHOU Rushuang, ZHANG Li, et al. EEGFuseNet: Hybrid unsupervised deep feature characterization and fusion for high-dimensional EEG with an application to emotion recognition[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1913–1925. doi: 10.1109/TNSRE.2021.3111689.
|
[142] |
PARVAIZ A, KHALID M A, ZAFAR R, et al. Vision transformers in medical computer vision—a contemplative retrospection[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106126. doi: 10.1016/j.engappai.2023.106126.
|