Advanced Search
Turn off MathJax
Article Contents
HUANG Chongwen, JI Ran, WEI Li, GONG Tierui, CHEN Xiaoming, SHA Wei, YANG Jun, ZHANG Zhaoyang, Yuen Chau. Electromagnetic Channel Modeling Theory and Approaches for Holographic MIMO Wireless Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231219
Citation: HUANG Chongwen, JI Ran, WEI Li, GONG Tierui, CHEN Xiaoming, SHA Wei, YANG Jun, ZHANG Zhaoyang, Yuen Chau. Electromagnetic Channel Modeling Theory and Approaches for Holographic MIMO Wireless Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231219

Electromagnetic Channel Modeling Theory and Approaches for Holographic MIMO Wireless Communications

doi: 10.11999/JEIT231219
Funds:  The National Key R&D Program (2021YFA1000500, 2023YFB2904800), The National Natural Science Foundation of China (62331023, 62101492, 62394292, U20A20158), Zhejiang Provincial Natural Science Foundation (LR22F010002), Zhejiang Provincial Science and Technology Plan Project (2024C01033), Zhejiang University Global Cooperation Fund
  • Received Date: 2023-11-02
  • Rev Recd Date: 2024-03-18
  • Available Online: 2024-03-19
  • Holographic Multiple-Input Multiple-Output (HMIMO) is an emerging technology for 6G communications. This type of array is composed of densely distributed antenna elements within a fixed aperture area. It is an extension of Massive MIMO technology under the practical constraints of antenna aperture. HMIMO systems have great potential in significantly improving wireless communication performance. However, due to the presence of closely spaced antennas, and the distane between antennas is less than half of the length, severe coupling effects are inevitable and traditional assumption of independent and identically distributed channel is invalid. Thus, designing an effective and practical channel model becomes one of the most challenging problems in HMIMO researches. To address these challenges, this paper investigates four channel modeling approaches based on electromagnetic field theory. The first approach is based on the plane Green’s function and models the integral of Green’s functions between planes with high complexity. The second and third approaches approximate the communication channel in HMIMO using plane wave expansion and spherical wave expansion, respectively, with lower complexity. The channel modeling based on plane wave expansion is relatively simple and is more suitable for far field, but would underestimate the maximum capacity of the system under strong coupling between antennas. The channel modeling based on spherical wave expansion better captures the characteristics of the electromagnetic wave channel but comes with higher complexity. Finally, a channel modeling method based on random Green’s functions is introduced, primarily describing the random characteristics of electromagnetic waves in rich scattering environments or Rayleigh channels.
  • loading
  • [1]
    HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534.
    [2]
    MARZETTA T L. Spatially-stationary propagating random field model for massive MIMO small-scale fading[C]. 2018 IEEE International Symposium on Information Theory, Vail, USA, 2018: 391–395. doi: 10.1109/ISIT.2018.8437634.
    [3]
    PIZZO A, SANGUINETTI L, and MARZETTA T L. Spatial characterization of electromagnetic random channels[J]. IEEE Open Journal of the Communications Society, 2022, 3: 847–866. doi: 10.1109/OJCOMS.2022.3171409.
    [4]
    HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609.
    [5]
    WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Channel estimation for RIS-empowered multi-user MISO wireless communications[J]. IEEE Transactions on Communications, 2021, 69(6): 4144–4157. doi: 10.1109/TCOMM.2021.3063236.
    [6]
    STRINATI E C, ALEXANDROPOULOS G C, WYMEERSCH H, et al. Reconfigurable, intelligent, and sustainable wireless environments for 6G smart connectivity[J]. IEEE Communications Magazine, 2021, 59(10): 99–105. doi: 10.1109/MCOM.001.2100070.
    [7]
    WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Multi-user holographic MIMO surfaces: Channel modeling and spectral efficiency analysis[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 1112–1124. doi: 10.1109/JSTSP.2022.3176140.
    [8]
    WILLIAMS R J, DE CARVALHO E, and MARZETTA T L. A communication model for large intelligent surfaces[C]. 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICCWorkshops49005.2020.9145091.
    [9]
    BASHARAT S, HASSAN S A, PERVAIZ H, et al. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks[J]. IEEE Wireless Communications, 2021, 28(6): 184–191. doi: 10.1109/MWC.011.2100016.
    [10]
    NIE Shuai and AKYILDIZ I F. Codebook design for dual-polarized ultra-massive MIMO communications at millimeter wave and terahertz bands[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 2021: 8072–8076. doi: 10.1109/ICASSP39728.2021.9413660.
    [11]
    DE SENA A S, NARDELLI P H J, DA COSTA D B, et al. Dual-polarized IRSs in uplink MIMO-NOMA networks: An interference mitigation approach[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2284–2288. doi: 10.1109/LWC.2021.3099867.
    [12]
    ZAFARI G, KOCA M, and SARI H. Dual-polarized spatial modulation over correlated fading channels[J]. IEEE Transactions on Communications, 2017, 65(3): 1336–1352. doi: 10.1109/TCOMM.2016.2643664.
    [13]
    HAN Yu, LI Xiao, TANG Wankai, et al. Dual-polarized RIS-assisted mobile communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 591–606. doi: 10.1109/TWC.2021.3098521.
    [14]
    FRANCESCHETTI M. Wave Theory of Information[M]. Cambridge, UK: Cambridge University Press, 2017. doi: 10.1017/9781139136334.
    [15]
    YUAN S S A, HE Zi, CHEN Xiaoming, et al. Electromagnetic effective degree of freedom of an MIMO system in free space[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(3): 446–450. doi: 10.1109/LAWP.2021.3135018.
    [16]
    MIKKI S M and ANTAR Y M M. A theory of antenna electromagnetic near field — part II[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(12): 4706–4724. doi: 10.1109/TAP.2011.2165500.
    [17]
    ARNOLDUS H F. Representation of the near-field, middle-field, and far-field electromagnetic green’s functions in reciprocal space[J]. Journal of the Optical Society of America B, 2001, 18(4): 547–555. doi: 10.1364/JOSAB.18.000547.
    [18]
    DE ROSNY J, LEROSEY G, and FINK M. Theory of electromagnetic time-reversal mirrors[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(10): 3139–3149. doi: 10.1109/TAP.2010.2052567.
    [19]
    WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Tri-polarized holographic MIMO surface in near-field: Channel modeling and precoding design[EB/OL]. https://arxiv.org/abs/2211.03479, 2022.
    [20]
    OCHELTREE K B and FRIZZEL L A. Sound field calculation for rectangular sources[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1989, 36(2): 242–248. doi: 10.1109/58.19157.
    [21]
    SETÄLÄ T, KAIVOLA M, and FRIBERG A T. Decomposition of the point-dipole field into homogeneous and evanescent parts[J]. Physical Review E, 1999, 59(1): 1200–1206. doi: 10.1103/PhysRevE.59.1200.
    [22]
    PIZZO A, SANGUINETTI L, and MARZETTA T L. Fourier plane-wave series expansion for holographic MIMO communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6890–6905. doi: 10.1109/TWC.2022.3152965.
    [23]
    PIZZO A, MARZETTA T L, and SANGUINETTI L. Spatially-stationary model for holographic MIMO small-scale fading[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 1964–1979. doi: 10.1109/JSAC.2020.3000877.
    [24]
    JIANG J S and INGRAM M A. Spherical-wave model for short-range MIMO[J]. IEEE Transactions on Communications, 2005, 53(9): 1534–1541. doi: 10.1109/TCOMM.2005.852842.
    [25]
    DOVELOS K, ASSIMONIS S D, QUOC NGO H, et al. Intelligent reflecting surfaces at terahertz bands: Channel modeling and analysis[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473890.
    [26]
    BALANIS C A. Advanced Engineering Electromagnetics[M]. 2nd ed. Hoboken, USA: John Wiley & Sons, 2012.
    [27]
    LIN Shen, LUO Sangrui, MA Shukai, et al. Predicting statistical wave physics in complex enclosures: A stochastic dyadic green’s function approach[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(2): 436–453. doi: 10.1109/TEMC.2023.3234912.
    [28]
    STEIN J, STÖCKMANN H J, and STOFFREGEN U. Microwave studies of billiard green functions and propagators[J]. Physical Review Letters, 1995, 75(1): 53–56. doi: 10.1103/PhysRevLett.75.53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (195) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return