Citation: | KANG Jiawen, WU Tianhao, WEN Jinbo, CHEN Junlong, XIONG Zehui, HUANG Xumin, LIU Lei. Optimal Miner Allocation Scheme for Sub-metaverses: From Multi-knapsack Problem Perspective[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2177-2186. doi: 10.11999/JEIT231214 |
[1] |
WANG Hang, NING Huansheng, LIN Yujia, et al. A survey on the metaverse: The state-of-the-art, technologies, applications, and challenges[J]. IEEE Internet of Things Journal, 2023, 10(16): 14671–14688. doi: 10.1109/JIOT.2023.3278329.
|
[2] |
LIN Yijing, DU Hongyang, NIYATO D, et al. Blockchain-aided secure semantic communication for AI-generated content in metaverse[J]. IEEE Open Journal of the Computer Society, 2023, 4: 72–83. doi: 10.1109/OJCS.2023.3260732.
|
[3] |
CAO Bin, WANG Zixin, ZHANG Long, et al. Blockchain systems, technologies, and applications: A methodology perspective[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 353–385. doi: 10.1109/COMST.2022.3204702.
|
[4] |
REHMAN W, ZAINAB H E, IMRAN J, et al. NFTs: Applications and challenges[C]. The 22nd International Arab Conference on Information Technology (ACIT), Muscat, Oman, 2021: 1–7. doi: 10.1109/ACIT53391.2021.9677260.
|
[5] |
WEN Jinbo, LIU Xiaojun, XIONG Zehui, et al. Optimal block propagation and incentive mechanism for blockchain networks in 6g[C]. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Wuhan, China, 2022: 369–374. doi: 10.1109/TrustCom56396.2022.00058.
|
[6] |
ZHENG Zibin, XIE Shaoan, DAI Hongning, et al. Blockchain challenges and opportunities: A survey[J]. International Journal of Web and Grid Services, 2018, 14(4): 352–375. doi: 10.1504/IJWGS.2018.095647.
|
[7] |
YANG Qinglin, ZHAO Yetong, HUANG Huawei, et al. Fusing blockchain and AI with metaverse: A survey[J]. IEEE Open Journal of the Computer Society, 2022, 3: 122–136. doi: 10.1109/OJCS.2022.3188249.
|
[8] |
KANG Jiawen, HE Jiayi, DU Hongyang, et al. Adversarial attacks and defenses for semantic communication in vehicular metaverses[J]. IEEE Wireless Communications, 2023, 30(4): 48–55. doi: 10.1109/MWC.004.2200617.
|
[9] |
KANG Jiawen, WEN Jinbo, YE Dongdong, et al. Blockchain-empowered federated learning for healthcare metaverses: User-centric incentive mechanism with optimal data freshness[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(1): 348–362. doi: 10.1109/TCCN.2023.3316643.
|
[10] |
NGUYEN C T, HOANG D T, NGUYEN D N, et al. MetaChain: A novel blockchain-based framework for metaverse applications[C]. 2022 IEEE 95th Vehicular Technology Conference, Helsinki, Finland, 2022: 1–5. doi: 10.1109/VTC2022-Spring54318.2022.9860983.
|
[11] |
JIANG Zexun, ZHA Cong, LI Xinyi, et al. A cross-chain framework for industry collaboration and transaction[C]. 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta), Haikou, China, 2022: 2436–2443. doi: 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00341.
|
[12] |
REN Yongjun, LV Zhiying, XIONG N N, et al. HCNCT: A cross-chain interaction scheme for the blockchain-based metaverse[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2024, 20(7): 188. doi: 10.1145/3594542.
|
[13] |
WOOD G. POLKDOT: Vision for a heterogeneous multi-chain framework[EB/OL]. https://assets.polkadot.network/Polkadot-whitepaper.pdf, 2022.
|
[14] |
LUONG N C, HOANG D T, GONG Shimin, et al. Applications of deep reinforcement learning in communications and networking: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3133–3174. doi: 10.1109/COMST.2019.2916583.
|
[15] |
GU Jinlei, WANG Jiacun, GUO Xiwang, et al. A metaverse-based teaching building evacuation training system with deep reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(4): 2209–2219. doi: 10.1109/TSMC.2022.3231299.
|
[16] |
WANG Zhilin, HUT Q, XU Minghui, et al. Blockchain-based edge resource sharing for metaverse[C]. 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, USA, 2022: 620–626. doi: 10.1109/MASS56207.2022.00092.
|
[17] |
LIU Weikang, CAO Bin, and PENG Mugen. Blockchain based offloading strategy: Incentive, effectiveness and security[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3533–3546. doi: 10.1109/JSAC.2022.3213324.
|
[18] |
CAO Mingrui, ZHANG Long, and CAO Bin. Toward on-device federated learning: A direct acyclic graph-based blockchain approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 2028–2042. doi: 10.1109/TNNLS.2021.3105810.
|
[19] |
OU Wei, HUANG Shiying, ZHENG Jingjing, et al. An overview on cross-chain: Mechanism, platforms, challenges and advances[J]. Computer Networks, 2022, 218: 109378. doi: 10.1016/j.comnet.2022.109378.
|
[20] |
LIN Shaofeng, KONG Yihan, and NIE Shaotao. Overview of block chain cross chain technology[C]. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Beihai, China, 2021: 357–360. doi: 10.1109/ICMTMA52658.2021.00083.
|
[21] |
PRADANA I G M T, DJATNA T, and HERMADI I. Blockchain modeling for traceability information system in supply chain of coffee agroindustry[C]. 2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Depok, Indonesia, 2020: 217–224. doi: 10.1109/ICACSIS51025.2020.9263214.
|
[22] |
LIU Xiaojun, WANG Wenbo, NIYATO D, et al. Evolutionary game for mining pool selection in blockchain networks[J]. IEEE Wireless Communications Letters, 2018, 7(5): 760–763. doi: 10.1109/LWC.2018.2820009.
|
[23] |
KANG Jiawen, XIONG Zehui, NIYATO D, et al. Incentivizing consensus propagation in proof-of-stake based consortium blockchain networks[J]. IEEE Wireless Communications Letters, 2019, 8(1): 157–160. doi: 10.1109/LWC.2018.2864758.
|
[24] |
ZHANG Junwei, ZHANG Zhenghao, HAN Shuai, et al. Proximal policy optimization via enhanced exploration efficiency[J]. Information Sciences, 2022, 609: 750–765. doi: 10.1016/j.ins.2022.07.111.
|
[25] |
ZHAN Yufeng, LI Peng, QU Zhihao, et al. A learning-based incentive mechanism for federated learning[J]. IEEE Internet of Things Journal, 2020, 7(7): 6360–6368. doi: 10.1109/JIOT.2020.2967772.
|