Citation: | YUAN Yueyi, YANG Desheng, LIU Yunfei, ZHANG Kuang. Research Progress in Multi-Mode Integration and Dynamic Regulation of Microwave Band Vortex Beams[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1865-1873. doi: 10.11999/JEIT231211 |
[1] |
ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185.
|
[2] |
GNAUCK A H, WINZER P J, CHANDRASEKHAR S, et al. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM[J]. Journal of Lightwave Technology, 2011, 29(4): 373–377. doi: 10.1109/JLT.2010.2080259.
|
[3] |
HUI Xiaonan, ZHENG Shilie, HU Yiping, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 966–969. doi: 10.1109/LAWP.2014.2387431.
|
[4] |
ENGHETA N. Antenna-guided light[J]. Science, 2011, 334(6054): 317–318. doi: 10.1126/science.1213278.
|
[5] |
MODUGU Y B, RAO M V, MONDAL D, et al. Generation of OAM beam by a Uniform Circular Array with triangular patches[C]. Proceedings of 2022 IEEE Wireless Antenna and Microwave Symposium, Rourkela, India, 2022: 1–3. doi: 10.1109/WAMS54719.2022.9848408.
|
[6] |
ZHANG Qunhao, CHEN Wan, SUN Haifeng, et al. A circular-polarized vortex beams generation with orbital angular momentum based on a leaky-wave antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(6): 1311–1315. doi: 10.1109/LAWP.2023.3241248.
|
[7] |
YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713.
|
[8] |
AHMED H, KIM H, ZHANG Yuebian, et al. Optical metasurfaces for generating and manipulating optical vortex beams[J]. Nanophotonics, 2022, 11(5): 941–956. doi: 10.1515/nanoph-2021-0746.
|
[9] |
ISHFAQ M, LI Xiuping, QI Zihang, et al. A transmissive metasurface generating wideband OAM vortex beam in the Ka-band[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(8): 2007–2011. doi: 10.1109/LAWP.2023.3271675.
|
[10] |
ZHONG Tiegang, ZHANG Haoran, and NAN Jingchang. Generation of broadband high-modal and high-purity OAM using P-B phase metasurface[C]. Proceedings of 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, Guangzhou, China, 2022: 1–3. doi: 10.1109/IMWS-AMP54652.2022.10107237.
|
[11] |
BYUN W J, LEE Y S, KIM B S, et al. Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector[J]. Electronics Letters, 2015, 51(19): 1480–1482. doi: 10.1049/el.2015.1833.
|
[12] |
EDFORS O and JOHANSSON A J. Is orbital angular momentum (OAM) based radio communication an unexploited area?[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126–1131. doi: 10.1109/TAP.2011.2173142.
|
[13] |
ZHANG Chao and JIANG Xuefeng. Secure high-speed spread spectrum transmission system with orbital angular momentum[J]. IET Communications, 2020, 14(11): 1709–1717. doi: 10.1049/iet-com.2019.0976.
|
[14] |
LIU Baiyang, WONG S W, TAM K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1068–1076. doi: 10.1109/TAP.2021.3111214.
|
[15] |
ZHANG Kuang, WANG Yuxiang, BUROKUR S N, et al. Generating dual-polarized vortex beam by detour phase: From phase gradient metasurfaces to metagratings[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 200–209. doi: 10.1109/TMTT.2021.3075251.
|
[16] |
TIAN Hanwei, ZHANG Xinge, JIANG Weixiang, et al. Programmable controlling of multiple spatial harmonics via a nonlinearly phased grating metasurface[J]. Advanced Functional Materials, 2022, 32(31): 2203120. doi: 10.1002/adfm.202203120.
|