Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
YUAN Yueyi, YANG Desheng, LIU Yunfei, ZHANG Kuang. Research Progress in Multi-Mode Integration and Dynamic Regulation of Microwave Band Vortex Beams[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1865-1873. doi: 10.11999/JEIT231211
Citation: YUAN Yueyi, YANG Desheng, LIU Yunfei, ZHANG Kuang. Research Progress in Multi-Mode Integration and Dynamic Regulation of Microwave Band Vortex Beams[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1865-1873. doi: 10.11999/JEIT231211

Research Progress in Multi-Mode Integration and Dynamic Regulation of Microwave Band Vortex Beams

doi: 10.11999/JEIT231211
Funds:  The National Natural Science Foundation of China (62171165, 6230011745), China Postdoctoral Science Foundation (2022M710944), Postdoctoral Fellowships in Heilongjiang Province (LBH-Z22017)
  • Received Date: 2023-11-01
  • Rev Recd Date: 2024-04-08
  • Available Online: 2024-05-10
  • Publish Date: 2024-05-10
  • The recent researches on vortex beam multimode integration and dynamic regulation are summarized in this article. Starting from the passive metasurface lens, utilizing the comprehensive control effect of propagation phase and geometric phase, fractional modes of vortex beam with high-purity is realized on a single metasurface platform. Furthermore, based on the theory and method about multimode vortex beam integration by using passive metasurfaces, active tunable electromagnetic devices such as varactors are loaded into the metasurface unit cell to adopt dynamic switching and manual regulation of vortex beams. On this basis, a theoretical analysis and evaluation of the performance of vortex communication systems based on metasurface is conducted through channel modeling, laying a theoretical foundation for improving the channel capacity and information transmission rate of modern communication systems.
  • loading
  • [1]
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185.
    [2]
    GNAUCK A H, WINZER P J, CHANDRASEKHAR S, et al. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM[J]. Journal of Lightwave Technology, 2011, 29(4): 373–377. doi: 10.1109/JLT.2010.2080259.
    [3]
    HUI Xiaonan, ZHENG Shilie, HU Yiping, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 966–969. doi: 10.1109/LAWP.2014.2387431.
    [4]
    ENGHETA N. Antenna-guided light[J]. Science, 2011, 334(6054): 317–318. doi: 10.1126/science.1213278.
    [5]
    MODUGU Y B, RAO M V, MONDAL D, et al. Generation of OAM beam by a Uniform Circular Array with triangular patches[C]. Proceedings of 2022 IEEE Wireless Antenna and Microwave Symposium, Rourkela, India, 2022: 1–3. doi: 10.1109/WAMS54719.2022.9848408.
    [6]
    ZHANG Qunhao, CHEN Wan, SUN Haifeng, et al. A circular-polarized vortex beams generation with orbital angular momentum based on a leaky-wave antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(6): 1311–1315. doi: 10.1109/LAWP.2023.3241248.
    [7]
    YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713.
    [8]
    AHMED H, KIM H, ZHANG Yuebian, et al. Optical metasurfaces for generating and manipulating optical vortex beams[J]. Nanophotonics, 2022, 11(5): 941–956. doi: 10.1515/nanoph-2021-0746.
    [9]
    ISHFAQ M, LI Xiuping, QI Zihang, et al. A transmissive metasurface generating wideband OAM vortex beam in the Ka-band[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(8): 2007–2011. doi: 10.1109/LAWP.2023.3271675.
    [10]
    ZHONG Tiegang, ZHANG Haoran, and NAN Jingchang. Generation of broadband high-modal and high-purity OAM using P-B phase metasurface[C]. Proceedings of 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, Guangzhou, China, 2022: 1–3. doi: 10.1109/IMWS-AMP54652.2022.10107237.
    [11]
    BYUN W J, LEE Y S, KIM B S, et al. Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector[J]. Electronics Letters, 2015, 51(19): 1480–1482. doi: 10.1049/el.2015.1833.
    [12]
    EDFORS O and JOHANSSON A J. Is orbital angular momentum (OAM) based radio communication an unexploited area?[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126–1131. doi: 10.1109/TAP.2011.2173142.
    [13]
    ZHANG Chao and JIANG Xuefeng. Secure high-speed spread spectrum transmission system with orbital angular momentum[J]. IET Communications, 2020, 14(11): 1709–1717. doi: 10.1049/iet-com.2019.0976.
    [14]
    LIU Baiyang, WONG S W, TAM K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1068–1076. doi: 10.1109/TAP.2021.3111214.
    [15]
    ZHANG Kuang, WANG Yuxiang, BUROKUR S N, et al. Generating dual-polarized vortex beam by detour phase: From phase gradient metasurfaces to metagratings[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 200–209. doi: 10.1109/TMTT.2021.3075251.
    [16]
    TIAN Hanwei, ZHANG Xinge, JIANG Weixiang, et al. Programmable controlling of multiple spatial harmonics via a nonlinearly phased grating metasurface[J]. Advanced Functional Materials, 2022, 32(31): 2203120. doi: 10.1002/adfm.202203120.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (93) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return