Citation: | ZHAO Feng, GENG Miaomiao, LIU Hanqiang, ZHANG Junjie, YU Jun. Convolutional Neural Network and Vision Transformer-driven Cross-layer Multi-scale Fusion Network for Hyperspectral Image Classification[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2237-2248. doi: 10.11999/JEIT231209 |
[1] |
BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6–36. doi: 10.1109/MGRS.2013.2244672.
|
[2] |
KHAN I H, LIU Haiyan, LI Wei, et al. Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat[J]. Remote Sensing, 2021, 13(18): 3612. doi: 10.3390/rs13183612.
|
[3] |
SUN Mingyue, LI Qian, JIANG Xuzi, et al. Estimation of soil salt content and organic matter on arable land in the yellow river delta by combining UAV hyperspectral and landsat-8 multispectral imagery[J]. Sensors, 2022, 22(11): 3990. doi: 10.3390/s22113990.
|
[4] |
STUART M B, MCGONIGLE A J S, and WILLMOTT J R. Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems[J]. Sensors, 2019, 19(14): 3071. doi: 10.3390/s19143071.
|
[5] |
BAZI Y and MELGANI F. Toward an optimal SVM classification system for hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3374–3385. doi: 10.1109/TGRS.2006.880628.
|
[6] |
GU Yanfeng, CHANUSSOT J, JIA Xiuping, et al. Multiple kernel learning for hyperspectral image classification: A review[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6547–6565. doi: 10.1109/TGRS.2017.2729882.
|
[7] |
LICCIARDI G A and CHANUSSOT J. Nonlinear PCA for visible and thermal hyperspectral images quality enhancement[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1228–1231. doi: 10.1109/LGRS.2015.2389269.
|
[8] |
ROY S K, KRISHNA G, DUBEY S R, et al. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277–281. doi: 10.1109/LGRS.2019.2918719.
|
[9] |
GONG Zhiqiang, ZHONG Ping, YU Yang, et al. A CNN with multiscale convolution and diversified metric for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3599–3618. doi: 10.1109/TGRS.2018.2886022.
|
[10] |
MENG Zhe, LI Lingling, JIAO Licheng, et al. Fully dense multiscale fusion network for hyperspectral image classification[J]. Remote Sensing, 2019, 11(22): 2718. doi: 10.3390/rs11222718.
|
[11] |
ZHU Minghao, JIAO Licheng, LIU Fang, et al. Residual spectral–spatial attention network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 449–462. doi: 10.1109/TGRS.2020.2994057.
|
[12] |
MENG Zhe, JIAO Licheng, LIANG Miaomiao, et al. A lightweight spectral-spatial convolution module for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 5505105. doi: 10.1109/LGRS.2021.3069202.
|
[13] |
刘娜, 李伟, 陶然. 图信号处理在高光谱图像处理领域的典型应用[J]. 电子与信息学报, 2023, 45(5): 1529–1540. doi: 10.11999/JEIT220887.
LIU Na, LI Wei, and TAO Ran. Typical application of graph signal processing in hyperspectral image processing[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1529–1540. doi: 10.11999/JEIT220887.
|
[14] |
HONG Danfeng, GAO Lianru, YAO Jing, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5966–5978. doi: 10.1109/TGRS.2020.3015157.
|
[15] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C/OL]. 9th International Conference on Learning Representations, 2021. https://arxiv.org/abs/2010.11929v1.
|
[16] |
HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer: Rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5518615. doi: 10.1109/TGRS.2021.3130716.
|
[17] |
REN Qi, TU Bing, LIAO Sha, et al. Hyperspectral image classification with IFormer network feature extraction[J]. Remote Sensing, 2022, 14(19): 4866. doi: 10.3390/rs14194866.
|
[18] |
SUN Le, ZHAO Guangrui, ZHENG Yuhui, et al. Spectral-spatial feature tokenization transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5522214. doi: 10.1109/TGRS.2022.3144158.
|
[19] |
MEI Shaohui, SONG Chao, MA Mingyang, et al. Hyperspectral image classification using group-aware hierarchical transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5539014. doi: 10.1109/TGRS.2022.3207933.
|
[20] |
ZHANG Junjie, MENG Zhe, ZHAO Feng, et al. Convolution transformer mixer for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6014205. doi: 10.1109/LGRS.2022.3208935.
|
[21] |
ZHAO Feng, LI Shijie, ZHANG Junjie, et al. Convolution transformer fusion splicing network for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 5501005. doi: 10.1109/LGRS.2022.3231874.
|
[22] |
LIU Na, LI Wei, SUN Xian, et al. Remote sensing image fusion with task-inspired multiscale nonlocal-attention network[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 5502505. doi: 10.1109/LGRS.2023.3254049.
|
[23] |
YANG Jiaqi, DU Bo, and WU Chen. Hybrid vision transformer model for hyperspectral image classification[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1388–1391. doi: 10.1109/IGARSS46834.2022.9884262.
|
[24] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520. doi: 10.1109/CVPR.2018.00474.
|
[25] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
|