Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
SUN Aoyun, WEN Peixu, SHAO Huaixian, WANG Annan, LU Yi, ZHANG Biao, ZENG Yonghong, ZHANG Zhang. A Review of High-Resolution Audio Sigma-Delta Modulator[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1874-1887. doi: 10.11999/JEIT231208
Citation: SUN Aoyun, WEN Peixu, SHAO Huaixian, WANG Annan, LU Yi, ZHANG Biao, ZENG Yonghong, ZHANG Zhang. A Review of High-Resolution Audio Sigma-Delta Modulator[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1874-1887. doi: 10.11999/JEIT231208

A Review of High-Resolution Audio Sigma-Delta Modulator

doi: 10.11999/JEIT231208
Funds:  The National Natural Science Foundation of China (U19A2053), The Natural Science Foundation of Anhui Province (2308085MF207), The National Laboratory of Science and Technology on Analog Integrated Circuit (JCKY2022210C001)
  • Received Date: 2023-11-01
  • Rev Recd Date: 2024-04-23
  • Available Online: 2024-05-11
  • Publish Date: 2024-05-30
  • Sigma-Delta (Σ-Δ) Analog-to-Digital Converter (ADC) is based on oversampling and noise shaping techniques to achieve high-resolution, and is characterized by low passive component matching requirements and simple structure. In high-resolution audio applications, Σ-Δ ADC has gained widespread attention and applications since it can achieve high dynamic range with good power efficiency. Recently, there has been a growing research trend in designing low-power, high-resolution audio ADCs using advanced processes and technologies. However, with process technology going to lower nodes and the reduction of supply voltages, the circuit design becomes more challenging. This paper reviews the state-of-the-art of the discrete-time and continuous-time design of high-resolution audio Sigma-Delta modulators, provides theoretical background for the design of high-resolution audio Sigma-Delta modulators, and gives research prospects.
  • loading
  • [1]
    INOSE H, YASUDA Y, and MURAKAMI J. A telemetering system by code modulation Δ-Σ modulation[J]. IRE Transactions on Space Electronics and Telemetry, 1962, SET-8(3): 204–209. doi: 10.1109/IRET-SET.1962.5008839.
    [2]
    郝志刚, 杨海钢, 张翀, 等. 一种改进的适用于Sigma-Delta ADC的数字抽取滤波器[J]. 电子与信息学报, 2010, 32(4): 1012–1016. doi: 10.3724/SP.J.1146.2009.00247.

    HAO Zhigang, YANG Haigang, ZHANG Chong, et al. An improved digital decimation filter for Sigma-Delta ADC[J]. Journal of Electronics & Information Technology, 2010, 32(4): 1012–1016. doi: 10.3724/SP.J.1146.2009.00247.
    [3]
    KUMAR R S A and KRISHNAPURA N. Multi-channel analog-to-digital conversion using a delta-sigma modulator without reset and a modulated-sinc-sum filter[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(1): 186–195. doi: 10.1109/TCSI.2021.3094679.
    [4]
    SAEED M A, KUMAR M, UMAPATHI B, et al. Optimization of slew mitigation capacitor in passive charge compensation-based delta-sigma modulator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(6): 1821–1825. doi: 10.1109/TCSII.2023.3234909.
    [5]
    PARK H, NAM K Y, SU D K, et al. A 0.7-V 870-μW digital-audio CMOS sigma-delta modulator[J]. IEEE Journal of Solid-State Circuits, 2009, 44(4): 1078–1088. doi: 10.1109/JSSC.2009.2014708.
    [6]
    WANG Yanchao, DEY S, HE Tao, et al. A hybrid continuous-time incremental and SAR two-step ADC with 90.5-dB DR over 1-MHz BW[J]. IEEE Solid-State Circuits Letters, 2022, 5: 122–125. doi: 10.1109/LSSC.2022.3172395.
    [7]
    LIU Qilong, BREEMS L J, BAJORIA S, et al. A 158-mW 360-MHz BW 68-dB DR continuous-time 1-1-1 filtering MASH ADC in 40-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2022, 57(12): 3781–3793. doi: 10.1109/JSSC.2022.3204871.
    [8]
    DALLA LONGA M, CONZATTI F, HOFMANN T, et al. An intrinsically linear 13-level capacitive DAC for delta sigma modulators[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(4): 1291–1295. doi: 10.1109/TCSII.2022.3224878.
    [9]
    MENG Lingxin, CHEN Junsheng, ZHAO Menglian, et al. An 18.2μW 101.1dB DR fully-dynamic ΔΣ ADC with partially-feedback noise-shaping quantizer and CLS-embedded two-stage FIAs[C]. 2023-IEEE 49th European Solid State Circuits Conference, Lisbon, Portugal, 2023: 393–396. doi: 10.1109/ESSCIRC59616.2023.10268800.
    [10]
    WANG Hetong, ZHENG Zhongxu, and PUN K P. A 13-level SC DAC achieving high linearity with a simple DEM for wideband CT DSMs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(8): 2754–2758. doi: 10.1109/TCSII.2023.3246031.
    [11]
    TAN Dayong, ZOU Yang, ZHONG Linsheng, et al. A novel structure optimizer based on heuristic search for delta-sigma modulator in mobile fronthaul[J]. IEEE Photonics Technology Letters, 2022, 34(21): 1131–1134. doi: 10.1109/LPT.2022.3204605.
    [12]
    段权珍, 谢鹏, 孟真, 等. 一种开关电容过采样delta-sigma调制器电路[P]. 中国, 112187281A, 2021.

    DUAN Quanzhen, XIE Peng, MENG Zhen, et al. Switched capacitor oversampling delta-sigma modulator circuit[P]. CN, 112187281A, 2021.
    [13]
    KIM J, SHIN H, NA S, et al. A 860.8-nW low-power continuous-time delta-sigma modulator with switched resistors for sensor applications[C]. 2023 IEEE International Symposium on Circuits and Systems, Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10181932.
    [14]
    SOMAPPA L and BAGHINI M S. Continuous-time hybrid ΔΣ modulators for sub-μW power multichannel biomedical applications[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(4): 406–417. doi: 10.1109/TVLSI.2022.3140222.
    [15]
    MOKHTAR M A, ABDELAAL A, SPORER M, et al. A 0.9-V DAC-calibration-free continuous-time incremental delta–sigma modulator achieving 97-dB SFDR at 2 MS/s in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2022, 57(11): 3407–3417. doi: 10.1109/JSSC.2022.3160325.
    [16]
    KIM M G, AHN G C, HANUMOLU P K, et al. A 0.9 V 92 dB double-sampled switched-RC delta-sigma audio ADC[J]. IEEE Journal of Solid-State Circuits, 2008, 43(5): 1195–1206. doi: 10.1109/JSSC.2008.920329.
    [17]
    PAVAN S, SCHREIER R, and TEMES G C. Understanding Delta-Sigma Data Converters[M]. 2nd ed. Hoboken: John Wiley & Sons, 2017: 39–50. doi: 10.1002/9781119258308.
    [18]
    MOUNIKA P, PU Y G, and LEE K Y. A 1.4mW sigma delta ADC with configurable filter for sensor applications[C]. 2023 Fourteenth International Conference on Ubiquitous and Future Networks, Paris, France, 2023: 697–699. doi: 10.1109/ICUFN57995.2023.10200609.
    [19]
    LEE S, JO W, SONG S, et al. A 300-μW audio ΔΣ modulator with 100.5-dB DR using dynamic bias inverter[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(11): 1866–1875. doi: 10.1109/TCSI.2016.2598734.
    [20]
    MA Song, LIU Liyuan, FANG Tong, et al. A discrete-time audio ΔΣ modulator using dynamic amplifier with speed enhancement and flicker noise reduction techniques[J]. IEEE Journal of Solid-State Circuits, 2020, 55(2): 333–343. doi: 10.1109/JSSC.2019.2941540.
    [21]
    SHIM J, HONG S K, and KWON O K. A low-power second-order double-sampling delta-sigma modulator for audio applications[C]. The 18th IEEE International Symposium on Consumer Electronics, Jeju, Korea (South), 2014: 1–2. doi: 10.1109/ISCE.2014.6884465.
    [22]
    WANG Yongsheng, JI Houchen, WANG Hongyin, et al. 116dB SFDR delta-sigma modulator with a novel GM-boost OPAMP for audio application[C]. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, 2014: 1–3. doi: 10.1109/ICSICT.2014.7021198.
    [23]
    ZHANG Beichen, DOU Runjiang, LIU Liyuan, et al. A 91.2dB SNDR 66.2fJ/conv. dynamic amplifier based 24kHz ΔΣ modulator[C]. 2016 IEEE Asian Solid-State Circuits Conference, Toyama, Japan, 2016: 317–320. doi: 10.1109/ASSCC.2016.7844199.
    [24]
    CHAE Y and HAN G. Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator[J]. IEEE Journal of Solid-State Circuits, 2009, 44(2): 458–472. doi: 10.1109/JSSC.2008.2010973.
    [25]
    LUO Hao, HAN Yan, CHEUNG R C C, et al. A 0.8-V 230-μW 98-dB DR inverter-based ΔΣ modulator for audio applications[J]. IEEE Journal of Solid-State Circuits, 2013, 48(10): 2430–2441. doi: 10.1109/JSSC.2013.2275659.
    [26]
    CHRISTEN T. A 15-bit 140-μW scalable-bandwidth inverter-based ΔΣ modulator for a MEMS microphone with digital output[J]. IEEE Journal of Solid-State Circuits, 2013, 48(7): 1605–1614. doi: 10.1109/JSSC.2013.2253232.
    [27]
    MICHEL F and STEYAERT M S J. A 250 mV 7.5 μW 61 dB SNDR SC ΔΣ modulator using near-threshold-voltage-biased inverter amplifiers in 130 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 47(3): 709–721. doi: 10.1109/JSSC.2011.2179732.
    [28]
    STEINER M and GREER N. 15.8 A 22.3b 1kHz 12.7mW switched-capacitor ΔΣ modulator with stacked split-steering amplifiers[C]. 2016 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2016: 284–286. doi: 10.1109/ISSCC.2016.7418018.
    [29]
    刘术彬, 沈愉轲, 韩昊霖, 等. 一种24位低失真Sigma-Delta模数转换器[P]. 中国, 113315522B, 2023.

    LIU Shubin, SHEN Yuke, HAN Haolin, et al. 24-bit low-distortion Sigma-Delta analog-to-digital converter[P]. CN, 113315522B, 2023.
    [30]
    顾昊然. 高性能Sigma-Delta调制器的设计与研究[D]. [硕士论文], 电子科技大学, 2023. doi: 10.27005/d.cnki.gdzku.2023.004361.

    GU Haoran. Research and design of high performance sigma-delta modulator[D]. [Master dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.004361.
    [31]
    BONCU M, PANA S, DRAGHICI F, et al. A second order discrete-time ΔA analog to digital converter for audio applications[C]. 2022 International Semiconductor Conference (CAS), Poiana Brasov, Romania, 2022: 209–212. doi: 10.1109/CAS56377.2022.9934665.
    [32]
    KANG K, ROH J, CHOI Y, et al. Class-D audio amplifier using 1-bit fourth-order delta-sigma modulation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(8): 728–732. doi: 10.1109/TCSII.2008.922457.
    [33]
    FUJIMOTO Y, RE P L, and MIYAMOTO M. A delta-sigma modulator for a 1-bit digital switching amplifier[J]. IEEE Journal of Solid-State Circuits, 2005, 40(9): 1865–1871. doi: 10.1109/JSSC.2005.848145.
    [34]
    VARONA J, VELAZQUEZ R, and TORRES M T. Design of baseband digital delta-sigma modulators in 180nm CMOS[J]. IEEE Latin America Transactions, 2015, 13(5): 1272–1278. doi: 10.1109/TLA.2015.7111979.
    [35]
    AHN G C, CHANG D Y, BROWN M E, et al. A 0.6-V 82-dB delta-sigma audio ADC using switched-RC integrators[J]. IEEE Journal of Solid-State Circuits, 2005, 40(12): 2398–2407. doi: 10.1109/JSSC.2005.856286.
    [36]
    YANG Yuqing, SCULLEY T, and ABRAHAM J. A single-die 124 dB stereo audio delta-sigma ADC with 111 dB THD[J]. IEEE Journal of Solid-State Circuits, 2008, 43(7): 1657–1665. doi: 10.1109/JSSC.2008.923731.
    [37]
    LIU Liyuan, LI Dongmei, CHEN Liangdong, et al. A 1-V 15-bit audio ΔΣ-ADC in 0.18 μm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(5): 915–925. doi: 10.1109/TCSI.2012.2188949.
    [38]
    CHO J S, RHEE J, KIM S, et al. A 1.2-V 108.9-dB A-weighted DR 101.4-dB SNDR audio ΔΣ ADC using a multi-rate noise-shaping quantizer[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(10): 1315–1319. doi: 10.1109/TCSII.2018.2853189.
    [39]
    GARVI R and PREFASI E. A novel multi-bit sigma-delta modulator using an integrating SAR noise-shaped quantizer[C]. 2018 25th IEEE International Conference on Electronics, Circuits and Systems, Bordeaux, France, 2018: 809–812. doi: 10.1109/ICECS.2018.8617956.
    [40]
    YAGHOUBI M, SABERI M, and LOTFI R. A 0.7-V 400-μW 16-bit audio sigma-delta modulator with a modified tracking quantizer[C]. 2016 24th Iranian Conference on Electrical Engineering, Shiraz, Iran, 2016: 1336–1341. doi: 10.1109/IranianCEE.2016.7585728.
    [41]
    WANG Zhengyu, ZHENG T H, LU Dongtian, et al. Configurable incremental sigma-delta ADC for DC measure and audio conversion[C]. 2014 Custom Integrated Circuits Conference, San Jose, USA, 2014: 1–4. doi: 10.1109/CICC.2014.6946081.
    [42]
    EL-CHAMMAS M and MURMANN B. A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration[J]. IEEE Journal of Solid-State Circuits, 2011, 46(4): 838–847. doi: 10.1109/JSSC.2011.2108125.
    [43]
    RAZAVI B. The StrongARM latch [a circuit for all seasons][J]. IEEE Solid-State Circuits Magazine, 2015, 7(2): 12–17. doi: 10.1109/MSSC.2015.2418155.
    [44]
    TANG Xiyuan, LIU Jiaxin, SHEN Yi, et al. Low-power SAR ADC design: Overview and survey of state-of-the-art techniques[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2249–2262. doi: 10.1109/TCSI.2022.3166792.
    [45]
    WOO S and CHO J K. A switched-capacitor filter with reduced sensitivity to reference noise for audio-band sigma–delta D/A converters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(4): 361–365. doi: 10.1109/TCSII.2015.2503714.
    [46]
    QURESHI W A, SALIMATH A, BOTTI E, et al. An incremental-ΔΣ ADC with 106-dB DR for reconfigurable Class-D audio amplifiers[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 929–933. doi: 10.1109/TCSII.2021.3130426.
    [47]
    YANG Zhenglin, YAO Libin, and LIAN Yong. A 0.5-V 35-μW 85-dB DR double-sampled ΔΣ modulator for audio applications[J]. IEEE Journal of Solid-State Circuits, 2012, 47(3): 722–735. doi: 10.1109/JSSC.2011.2181677.
    [48]
    LEE K, MENG Qingdong, SUGIMOTO T, et al. A 0.8 V, 2.6 mW, 88 dB dual-channel audio delta-sigma D/A converter with headphone driver[J]. IEEE Journal of Solid-State Circuits, 2009, 44(3): 916–927. doi: 10.1109/JSSC.2008.2012362.
    [49]
    LIU Yuyu, GAO Jun, and YANG Xiaodong. 24-bit low-power low-cost digital audio sigma-delta DAC[J]. Tsinghua Science and Technology, 2011, 16(1): 74–82. doi: 10.1016/S1007-0214(11)70012-8.
    [50]
    THIRUNAKKARASU S and BAKKALOGLU B. Built-in self-calibration and digital-trim technique for 14-bit SAR ADCs achieving ±1 LSB INL[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(5): 916–925. doi: 10.1109/TVLSI.2014.2321761.
    [51]
    NASIRI H, LI Cheng, and ZHANG Lihong. Ultra-low power SAR ADC using statistical characteristics of low-activity signals[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(9): 1319–1331. doi: 10.1109/TVLSI.2022.3187659.
    [52]
    JABBOUR C, FAKHOURY H, NGUYEN V T, et al. Delay-reduction technique for DWA algorithms[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(10): 733–737. doi: 10.1109/TCSII.2014.2335437.
    [53]
    曹天霖. 高性能带通∑△模数转换器芯片研究与实现[D]. [博士论文], 浙江大学, 2017: 51–55.

    CAO Tianlin. A high-performance band-pass sigma delta analog-to-digital converter[D]. [Ph. D. dissertation], Zhejiang University, 2017: 51–55.
    [54]
    ROYCHOWDHURY S and SEN S. Verilog modeling of 24 bit stereo DAC using multibit SDM[C]. 2020 IEEE VLSI Device Circuit and System, Kolkata, India, 2020: 1–6. doi: 10.1109/VLSIDCS47293.2020.9179880.
    [55]
    RISBO L, HEZAR R, KELLECI B, et al. Digital approaches to ISI-mitigation in high-resolution oversampled multi-level D/A converters[J]. IEEE Journal of Solid-State Circuits, 2011, 46(12): 2892–2903. doi: 10.1109/JSSC.2011.2164965.
    [56]
    HUANG Zhongyi, ZHAO Menglian, YANG Xiaolin, et al. A 3.86mW 106.4dB SNDR delta-sigma modulator based on switched-opamp for audio codec[C]. 2014 IEEE 57th International Midwest Symposium on Circuits and Systems, College Station, USA, 2014: 761–764. doi: 10.1109/MWSCAS.2014.6908526.
    [57]
    GEORGE S S, SONG Yu, and IGNJATOVIC Z. A 94-dB SFDR multi-bit audio-band delta-sigma converter with DAC nonlinearity suppression[C]. 2015 IEEE International Symposium on Circuits and Systems, Lisbon, Portugal, 2015: 2041–2044. doi: 10.1109/ISCAS.2015.7169078.
    [58]
    TANG Yuxiang, CHEN Xiaofei, and ZHU Hongbo. A 108-dB SNDR 2–1 MASH ΔΣ modulator with first-stage multibit for audio application[C]. 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems, Shanghai, China, 2018: 336–340. doi: 10.1109/ICAM.2018.8596380.
    [59]
    CHEN Chengying and ZHANG Feng. A 1-V, 82-dB SNR analog front-end with peak-statistics and comparative-DWA algorithm[C]. 2019 IEEE International Symposium on Circuits and Systems, Sapporo, Japan, 2019: 1–4. doi: 10.1109/ISCAS.2019.8702486.
    [60]
    WANG T C, LIN Y H, and LIU Chuncheng. A 0.022 mm2 98.5 dB SNDR hybrid audio ΔΣ modulator with digital ELD compensation in 28 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2015, 50(11): 2655–2664. doi: 10.1109/JSSC.2015.2453953.
    [61]
    LOZADA K E, JANG I H, BAE G J, et al. A 4th-order continuous-time delta-sigma modulator with hybrid noise-coupling[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(9): 3635–3639. doi: 10.1109/TCSII.2022.3182406.
    [62]
    吴凯凯, 王红义, 陈晨, 等. 环路延迟补偿电路及Sigma-Delta模数转换器[P]. 中国, 113328754B, 2022.

    WU Kaikai, WANG Hongyi, CHEN Chen, et al. Loop delay compensation circuit and Sigma-Delta analog-to-digital converter[P]. CN, 113328754B, 2022.
    [63]
    DRIEMEYER B, MANDRY H, WIENS D P, et al. PUF-entropy extraction of DAC intersymbol-interference using continuous-time delta-sigma ADCs[C]. 2022 29th IEEE International Conference on Electronics, Circuits and Systems, Glasgow, United Kingdom, 2022: 1–4. doi: 10.1109/ICECS202256217.2022.9971072.
    [64]
    PAVAN S, KRISHNAPURA N, PANDARINATHAN R, et al. A power optimized continuous-time ΔΣ ADC for audio applications[J]. IEEE Journal of Solid-State Circuits, 2008, 43(2): 351–360. doi: 10.1109/JSSC.2007.914263.
    [65]
    WAGNER J, MOKHTAR M A, and ORTMANNS M. Automated design of sigma-delta modulators with FIR feedback[C]. 2022 IEEE International Symposium on Circuits and Systems, Austin, USA, 2022: 571–575. doi: 10.1109/ISCAS48785.2022.9937222.
    [66]
    ZHU Shengling, CHEN Lei, and SU Jie. Digital calibration technique based AC injection for continuous-time sigma-delta converters[J]. Electronics Letters, 2023, 59(19): e12960. doi: 10.1049/ell2.12960.
    [67]
    ZHANG Hao, SHEN Linxiao, ZHANG Shichuang, et al. A 77μW 115dB-Dynamic-range 586fA-sensitivity current-domain continuous-time zoom ADC with pulse-width-modulated resistor DAC and background offset compensation scheme[C]. 2022 IEEE Custom Integrated Circuits Conference, Newport Beach, USA, 2022: 1–2. doi: 10.1109/CICC53496.2022.9772794.
    [68]
    DE BERTI C, MALCOVATI P, CRESPI L, et al. A 106 dB a-weighted DR low-power continuous-time ΣΔ modulator for MEMS microphones[J]. IEEE Journal of Solid-State Circuits, 2016, 51(7): 1607–1618. doi: 10.1109/JSSC.2016.2540811.
    [69]
    CHAE Y. Low-power continuous-time delta-sigma ADCs[C]. 2022 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, China, 2022: 1. doi: 10.1109/VLSI-DAT54769.2022.9768088.
    [70]
    BAL A, GUPTA S, and SINGH R. A real time multi-bit DAC mismatch estimation & correction technique for wideband continuous time sigma delta modulators[C]. 2022 35th International Conference on VLSI Design and 21st International Conference on Embedded Systems, Bangalore, India, 2022: 39–43. doi: 10.1109/VLSID2022.2022.00020.
    [71]
    LIU Huaiyu, GUO Tongtong, YAN Peng, et al. A hybrid 1st/2nd-order VCO-based CTDSM with rail-to-rail artifact tolerance for bidirectional neural interface[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(6): 2682–2686. doi: 10.1109/TCSII.2022.3153786.
    [72]
    LIU Huaiyu, QI Liang, WANG Guoxing, et al. A VCO-based CTDSM with integrated phase error correction for neural interface[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(10): 4018–4022. doi: 10.1109/TCSII.2022.3186788.
    [73]
    ZHONG Yi and SUN Nan. A survey of voltage-controlled-oscillator-based ΔΣ ADCs[J]. Tsinghua Science and Technology, 2022, 27(3): 472–480. doi: 10.26599/TST.2021.9010037.
    [74]
    POCHET C and HALL D A. A pseudo-virtual ground feedforwarding technique enabling linearization and higher order noise shaping in VCO-based ΔΣ modulators[J]. IEEE Journal of Solid-State Circuits, 2022, 57(12): 3746–3756. doi: 10.1109/JSSC.2022.3202040.
    [75]
    PARK J H, CHA J H, PARK Y, et al. A VCO-based 2nd-order Δ2–ΔΣ modulator for small-size high energy-efficient current sensing front-end[J]. IEEE Solid-State Circuits Letters, 2023, 6: 93–96. doi: 10.1109/LSSC.2023.3264499.
    [76]
    GUO Yuekang, JIN Jing, LIU Xiaoming, et al. An 18.1 mW 50 MHz-BW 76.4 dB-SNDR CTSDM with PVT-robust VCO quantizer and latency-free background-calibrated DAC[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(12): 4787–4798. doi: 10.1109/TCSI.2022.3192465.
    [77]
    JANG M, LEE C, and CHAE Y. A 134-μW 99.4-dB SNDR audio continuous-time delta-sigma modulator with chopped negative-R and tri-level FIR-DAC[J]. IEEE Journal of Solid-State Circuits, 2021, 56(6): 1761–1771. doi: 10.1109/JSSC.2020.3032152.
    [78]
    BILLA S, SUKUMARAN A, and PAVAN S. Analysis and design of continuous-time delta–sigma converters incorporating chopping[J]. IEEE Journal of Solid-State Circuits, 2017, 52(9): 2350–2361. doi: 10.1109/JSSC.2017.2717937.
    [79]
    ZHANG Jinghua, LIAN Yong, YAO Libin, et al. A 0.6-V 82-dB 28.6- μW continuous-time audio delta-sigma modulator[J]. IEEE Journal of Solid-State Circuits, 2011, 46(10): 2326–2335. doi: 10.1109/JSSC.2011.2161212.
    [80]
    PAVAN S and SANKAR P. Power reduction in continuous-time delta-sigma modulators using the assisted opamp technique[J]. IEEE Journal of Solid-State Circuits, 2010, 45(7): 1365–1379. doi: 10.1109/JSSC.2010.2048082.
    [81]
    DONIDA A, CELLIER R, NAGARI A, et al. A 40-nm CMOS, 1.1-V, 101-dB dynamic-range, 1.7-mW continuous-time ΣΔ ADC for a digital closed-loop Class-D amplifier[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(3): 645–653. doi: 10.1109/TCSI.2014.2373971.
    [82]
    AHMED I, CHERRY J, HASAN A, et al. A low-power Gm-C-based CT-ΔΣ audio-band ADC in 1.1V 65nm CMOS[C]. 2015 Symposium on VLSI Circuits, Kyoto, Japan, 2015: C294–C295. doi: 10.1109/VLSIC.2015.7231296.
    [83]
    LEE K, YOON Y, and SUN Nan. A scaling-friendly low-power small-area ΔΣ ADC with VCO-based integrator and intrinsic mismatch shaping capability[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, 5(4): 561–573. doi: 10.1109/JETCAS.2015.2502166.
    [84]
    CARDES F, GUTIERREZ E, QUINTERO A, et al. 0.04-mm2 103-dB-A dynamic range second-order VCO-based audio ΣΔ ADC in 0.13- µm CMOS[J]. IEEE Journal of Solid-State Circuits, 2018, 53(6): 1731–1742. doi: 10.1109/JSSC.2018.2799938.
    [85]
    ZHONG Yi, LI Shaolan, SANYAL A, et al. A second-order purely VCO-based CT ΔΣ ADC using a modified DPLL in 40-nm CMOS[C]. 2018 IEEE Asian Solid-State Circuits Conference, Tainan, China, 2018: 93–94. doi: 10.1109/ASSCC.2018.8579255.
    [86]
    MAGHAMI H, PAYANDEHNIA P, MIRZAIE H, et al. A highly linear OTA-less 1-1 MASH VCO-based ΔΣ ADC with an efficient phase quantization noise extraction technique[J]. IEEE Journal of Solid-State Circuits, 2020, 55(3): 706–718. doi: 10.1109/JSSC.2019.2954764.
    [87]
    PEREZ C, GARVI R, LOPEZ G, et al. A VCO-based ADC with direct connection to a microphone MEMS, 80-dB peak SNDR and 438-μW power consumption[J]. IEEE Sensors Journal, 2023, 23(8): 8466–8477. doi: 10.1109/JSEN.2023.3244663.
    [88]
    GARVI R, GRANIZO J, GUTIERREZ E, et al. A VCO-ADC linearized by a capacitive frequency-to-current converter[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(6): 1841–1845. doi: 10.1109/TCSII.2023.3236760.
    [89]
    GARVI R, ALVERO-GONZALEZ L M, PEREZ C, et al. VCO-ADC linearization by switched capacitor frequency-to-current conversion[C]. 2020 IEEE International Symposium on Circuits and Systems, Seville, Spain, 2020: 1–5. doi: 10.1109/ISCAS45731.2020.9180397.
    [90]
    THEERTHAM R, GANTA S N, and PAVAN S. Design of high-resolution continuous-time delta–sigma data converters with dual return-to-open DACs[J]. IEEE Journal of Solid-State Circuits, 2022, 57(11): 3418–3428. doi: 10.1109/JSSC.2022.3176876.
    [91]
    ZHANG Yang, BASAK D, and PUN K P. Power-efficient Gm-C DSMs with high immunity to aliasing, clock jitter, and ISI[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(2): 337–349. doi: 10.1109/TVLSI.2018.2874259.
    [92]
    FELDING H, HELLMAN L, TAN Siyu, et al. A three bit second order audio band delta sigma modulator with 98.2dB SQNR[C]. 2016 International Symposium on Integrated Circuits, Singapore, 2016: 1–4. doi: 10.1109/ISICIR.2016.7829750.
    [93]
    LIN Jiani, CHU H C, CHEN Zongyi, et al. A continuous-time delta-sigma modulator with novel data-weighted averaging algorithm for audio application[C]. 2015 IEEE International Conference on Electron Devices and Solid-State Circuits, Singapore, 2015: 281–284. doi: 10.1109/EDSSC.2015.7285105.
    [94]
    IWATA A, SAKIMURA N, NAGATA M, et al. An architecture of delta-sigma A-to-D converters using a voltage controlled oscillator as a multi-bit quantizer[C]. 1998 IEEE International Symposium on Circuits and Systems, Monterey, USA, 1998, 1: 389–392. doi: 10.1109/ISCAS.1998.704448.
    [95]
    STRAAYER M Z and PERROTT M H. A 10-bit 20MHz 38mW 950MHz CT ΣΔ ADC with a 5-bit noise-shaping VCO-based Quantizer and DEM circuit in 0.13u CMOS[C]. 2007 IEEE Symposium on VLSI Circuits, Kyoto, Japan, 2007: 246–247. doi: 10.1109/VLSIC.2007.4342737.
    [96]
    LEOW Y H, TANG H, SUN Zhuochao, et al. A 1 V 103 dB 3rd-Order audio continuous-time ΔΣ ADC with enhanced noise shaping in 65 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2016, 51(11): 2625–2638. doi: 10.1109/JSSC.2016.2593777.
    [97]
    NGUYEN K, ADAMS R, SWEETLAND K, et al. A 106-dB SNR hybrid oversampling analog-to-digital converter for digital audio[J]. IEEE Journal of Solid-State Circuits, 2005, 40(12): 2408–2415. doi: 10.1109/JSSC.2005.856284.
    [98]
    MATAMURA A, NISHIMURA N, BIRDSONG P, et al. An 82-mW ΔΣ-based filter-less Class-D headphone amplifier with −93-dB THD+N, 113-dB SNR, and 93% efficiency[J]. IEEE Journal of Solid-State Circuits, 2021, 56(12): 3573–3582. doi: 10.1109/JSSC.2021.3100548.
    [99]
    LO C, LEE J, LIM Y, et al. 10.1 A 116μW 104.4dB-DR 100.6dB-SNDR CT ΔΣ audio ADC using tri-level current-steering DAC with gate-leakage compensated off-transistor-based bias noise filter[C]. 2021 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2021: 164–166. doi: 10.1109/ISSCC42613.2021.9365807.
    [100]
    MARKER-VILLUMSEN N, JØRGENSEN I H H, and BRUUN E. Low power continuous-time delta-sigma ADC with current output DAC[C]. 2015 European Conference on Circuit Theory and Design, Trondheim, Norway, 2015: 1–4. doi: 10.1109/ECCTD.2015.7300096.
    [101]
    JIANG Xicheng, SONG J, CHEN Jianlong, et al. A low-power, high-fidelity stereo audio codec in 0.13 μm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 47(5): 1221–1231. doi: 10.1109/JSSC.2012.2185591.
    [102]
    NGUYEN K, BANDYOPADHYAY A, ADAMS B, et al. A 108 dB SNR, 1.1 mW oversampling audio DAC with a three-level DEM technique[J]. IEEE Journal of Solid-State Circuits, 2008, 43(12): 2592–2600. doi: 10.1109/JSSC.2008.2006314.
    [103]
    SUKUMARAN A and PAVAN S. Low power design techniques for single-bit audio continuous-time delta sigma ADCs using FIR feedback[J]. IEEE Journal of Solid-State Circuits, 2014, 49(11): 2515–2525. doi: 10.1109/JSSC.2014.2332885.
    [104]
    BILLA S, DIXIT S, and PAVAN S. Analysis and design of an audio continuous-time 1-X FIR-MASH delta–sigma modulator[J]. IEEE Journal of Solid-State Circuits, 2020, 55(10): 2649–2659. doi: 10.1109/JSSC.2020.2992891.
    [105]
    ORNA M, MORCHE D, BASCHIROTTO A, et al. Quantitative jitter simulations and FIR-DAC sizing for single-bit continuous time sigma delta modulators[C]. 2021 IEEE 12th Latin America Symposium on Circuits and System, Arequipa, Peru, 2021: 1–4. doi: 10.1109/LASCAS51355.2021.9459118.
    [106]
    SCHINKEL D, GROOTHEDDE W, MOSTERT F, et al. A multiphase Class-D automotive audio amplifier with integrated low-latency ADCs for digitized feedback after the output filter[J]. IEEE Journal of Solid-State Circuits, 2017, 52(12): 3181–3193. doi: 10.1109/JSSC.2017.2731812.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (664) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return