Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031
Citation: HUANG Chaoyi, NIE Zening, XIONG Min. Broadband High-Efficiency Continuous Inverse Class-F Power Amplifier Based on Input Harmonic Phase Control[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3428-3435. doi: 10.11999/JEIT231202

Broadband High-Efficiency Continuous Inverse Class-F Power Amplifier Based on Input Harmonic Phase Control

doi: 10.11999/JEIT231202 cstr: 32379.14.JEIT231202
Funds:  Chongqing Natural Science Foundation (cstc2020jcyj-msxmX0129), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201900621)
  • Received Date: 2023-11-01
  • Rev Recd Date: 2024-04-17
  • Available Online: 2024-05-13
  • Publish Date: 2024-08-10
  • The integration of satellite communication and ground mobile communication in a complementary manner has emerged as a prevailing trend, which means the wireless radio frequency front-end with Power Amplifier (PA) as the core need to tackle the dual challenges of high efficiency and large bandwidth. In this paper, the proposed input harmonic phase control method effectively overcomes the bottleneck of mutual restriction between bandwidth and efficiency. By employing a continuous inverse Class-F operating mode, it enables the reconstruction of transistor drain waveform through precise control of the input second harmonic phase. This approach ensures high efficiency, while significantly enhancing the impedance design space. Based on the expanded design space, a continuous inverse Class-F PA is designed and fabricated over the frequency band of 1.7~3.0 GHz. Experimental results demonstrate an output power of 40.62~42.78 dBm, accompanied by a drain efficiency ranging from 72.2% to 78.6%. Additionally, the gain of the designed PA ranges from 10.6 dB to 14.8 dB.
  • [1]
    徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363.

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics & Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363.
    [2]
    代志江, 孔淑曼, 李明玉, 等. 基于改进的稀疏最小二乘双子支撑向量回归的数字预失真技术[J]. 电子与信息学报, 2023, 45(2): 418–426. doi: 10.11999/JEIT220372.

    DAI Zhijiang, KONG Shuman, LI Mingyu, et al. A digital predistortion technique based on improved sparse least squares twin support vector regression[J]. Journal of Electronics & Information Technology, 2023, 45(2): 418–426. doi: 10.11999/JEIT220372.
    [3]
    CRIPPS S C, TASKER P J, CLARKE A L, et al. On the continuity of high efficiency modes in linear RF power amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(10): 665–667. doi: 10.1109/LMWC.2009.2029754.
    [4]
    CARRUBBA V, CLARKE A L, AKMAL M, et al. The continuous class-F mode power amplifier[C]. The 40th European Microwave Conference, Paris, France, 2010: 1674–1677. doi: 10.23919/EUMC.2010.5616309.
    [5]
    CARRUBBA V, BELL J J, SMITH R M, et al. Inverse class-FJ: Experimental validation of a new PA voltage waveform family[C]. Asia-Pacific Microwave Conference 2011, Melbourne, Australia, 2011: 1254–1257.
    [6]
    LIU Wang, LIU Qiang, DU Guangxing, et al. Dual-band high-efficiency power amplifier based on a series of inverse continuous modes with second-harmonic control[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(8): 1199–1202. doi: 10.1109/LMWT.2023.3271903.
    [7]
    DONG Yezi, MAO Luhong, and XIE Sheng. Extended continuous inverse class-F power amplifiers with class-AB bias conditions[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 368–370. doi: 10.1109/LMWC.2017.2678433.
    [8]
    SHI Weimin, HE Songbai, and LI Qirong. A series of inverse continuous modes for designing broadband power amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(7): 525–527. doi: 10.1109/LMWC.2016.2574820.
    [9]
    PANG Jingzhou, HE Songbai, HUANG Chaoyi, et al. A novel design of concurrent dual-band high efficiency power amplifiers with harmonic control circuits[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(2): 137–139. doi: 10.1109/LMWC.2016.2517334.
    [10]
    HUANG Chaoyi, HE Songbai, SHI Weimin, et al. Design of broadband high-efficiency power amplifiers based on the hybrid continuous modes with phase shift parameter[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(2): 159–161. doi: 10.1109/LMWC.2017.2787061.
    [11]
    WANG Tao, CHENG Zhiqun, LIU Guohua, et al. Highly efficient broadband continuous inverse class-F power amplifier using multistage second harmonic control output matching network[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(5): e22162. doi: 10.1002/mmce.22162.
    [12]
    SONG Kaijun, HE Aoke, and LI Qian. Hybrid continuous inverse class-F high-efficiency power amplifier based on phase shift analysis[J]. Microwave and Optical Technology Letters, 2023, 65(2): 567–572. doi: 10.1002/mop.33544.
    [13]
    SHEN Ce, HE Songbai, XIAO Zehua, et al. High-efficiency hybrid continuous mode power amplifier with input and output harmonic engineering[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32(4): e23035. doi: 10.1002/mmce.23035.
    [14]
    SHARMA T, SRINIDHI E R, DARRAJI R, et al. High-efficiency input and output harmonically engineered power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 1002–1014. doi: 10.1109/TMTT.2017.2756046.
    [15]
    DHAR S K, SHARMA T, DARRAJI R, et al. Investigation of input–output waveform engineered continuous inverse class F power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(9): 3547–3561. doi: 10.1109/TMTT.2019.2923187.
    [16]
    ESKANDARI S, ZHAO Yulong, HELAOUI M, et al. Continuous-mode inverse class-GF power amplifier with second-harmonic impedance optimization at device input[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(5): 2506–2518. doi: 10.1109/TMTT.2021.3065130.
    [17]
    TASKER P J and BENEDIKT J. Waveform inspired models and the harmonic balance emulator[J]. IEEE Microwave Magazine, 2011, 12(2): 38–54. doi: 10.1109/MMM.2010.940101.
  • Cited by

    Periodical cited type(27)

    1. 苏琮智,杨承志,邴雨晨,吴宏超,邓力洪. 基于CNN-Swin Transformer Network的LPI雷达信号识别. 现代雷达. 2024(03): 59-65 .
    2. 宁晓燕,李书凯,孙志国,毛慧敏. 信息跳时架构下分层捷变低截获概率通信波形. 哈尔滨工程大学学报. 2023(04): 664-672 .
    3. 江良剑,谢伟朋,吴力华. 基于降噪模糊函数和EfficientNet的雷达信号识别. 舰船电子工程. 2023(11): 78-83 .
    4. 吴力华,杨露菁,袁园. 基于EEMD降噪和模糊函数奇异值向量的雷达辐射源信号识别算法. 火力与指挥控制. 2022(02): 121-126 .
    5. 曲志昱 ,李根 ,邓志安 . 基于知识蒸馏与注意力图的雷达信号识别方法. 电子与信息学报. 2022(09): 3170-3177 . 本站查看
    6. 邹旭东,杨伍昊,郭潇威,孙杰,郑天依. 基于MEMS谐振器硬件储备池计算的类脑信号处理方法. 信号处理. 2022(11): 2287-2298 .
    7. 普运伟,刘涛涛,吴海潇,郭江. 基于卷积双向长短时记忆网络的雷达辐射源信号识别. 激光与光电子学进展. 2022(22): 361-368 .
    8. 石礼盟,杨承志,王美玲,许冰. 基于深度网络的雷达信号调制方式识别. 兵器装备工程学报. 2021(06): 190-193+218 .
    9. 孙洪颖,陈龙崇,郑传俊,黄劲龙,陈振国,钟丽芬. 面向农业智能装备的表面肌电信号识别. 智慧农业导刊. 2021(01): 1-5 .
    10. 董晓璇,胡华强,程嗣怡. 融合隐马尔科夫模型的雷达工作状态跟踪. 电子测量与仪器学报. 2020(01): 128-133 .
    11. 张忠民,刘刚,刘鲁涛. 基于分数阶傅里叶变换和循环谱的雷达信号调制方式识别. 应用科技. 2020(03): 30-36 .
    12. 杨洋,刘永鹏,于家傲,翁呈祥. 运用深度信念网络的雷达干扰效能评估. 空军预警学院学报. 2020(05): 356-359 .
    13. 倪雪,王华力,徐志军,荣传振. 基于STFT-SST和深度卷积网络的多相码雷达信号识别. 数据采集与处理. 2020(06): 1090-1096 .
    14. 张孟伯,王伦文,冯彦卿. 基于卷积神经网络的OFDM频谱感知方法. 系统工程与电子技术. 2019(01): 178-186 .
    15. 王小瑞,侯兴松,王生霄. 基于YOLOv3网络的超宽带雷达生命信号检测. 国外电子测量技术. 2019(06): 1-8 .
    16. 刘赢,田润澜,王晓峰. 基于深层卷积神经网络和双谱特征的雷达信号识别方法. 系统工程与电子技术. 2019(09): 1998-2005 .
    17. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    18. 刘赢,田润澜,董会旭. 基于多尺度残差网络和小波变换的LPI雷达信号识别. 电讯技术. 2019(12): 1423-1428 .
    19. 徐宇恒,程嗣怡,董晓璇,周一鹏,董鹏宇. 基于DBN特征提取的雷达辐射源个体识别. 空军工程大学学报(自然科学版). 2019(06): 91-96+108 .
    20. 岳嘉颖,胡岚,郑娜娥,蒋春启. 基于双谱三维图像纹理特征的辐射源个体识别. 信息工程大学学报. 2019(06): 678-683 .
    21. 王星,呙鹏程,田元荣,王玉冰. 基于BDS-GD的低截获概率雷达信号识别. 北京航空航天大学学报. 2018(03): 583-592 .
    22. 郭立民,寇韵涵,陈涛,张明. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别. 电子与信息学报. 2018(04): 875-881 . 本站查看
    23. 呙鹏程,王星,程嗣怡,汪峰. 改进Chirplet时频原子的非线性调频信号分解. 西安电子科技大学学报. 2018(01): 123-128 .
    24. 呙鹏程,王星,田元荣. 基于CEEMDAN-ASVM的低截获概率雷达信号识别. 现代雷达. 2018(03): 27-32 .
    25. 戴亮军. 基于频谱和瞬时频率特征的雷达信号识别. 哈尔滨商业大学学报(自然科学版). 2018(05): 568-572+587 .
    26. 苏宁远,陈小龙,关键,牟效乾,刘宁波. 基于卷积神经网络的海上微动目标检测与分类方法. 雷达学报. 2018(05): 565-574 .
    27. 符颖,王星,周一鹏,范翔宇. 基于改进半监督朴素贝叶斯的LPI雷达信号识别. 系统工程与电子技术. 2017(11): 2463-2469 .

    Other cited types(42)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (329) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return