Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
GAO Yunfei, HU Yulin, LIU Mingliu, HUANG Yuxi, SUN Peng. Joint Multi-UAV Trajectory Design for Power Line Inspection[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1958-1967. doi: 10.11999/JEIT231199
Citation: GAO Yunfei, HU Yulin, LIU Mingliu, HUANG Yuxi, SUN Peng. Joint Multi-UAV Trajectory Design for Power Line Inspection[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1958-1967. doi: 10.11999/JEIT231199

Joint Multi-UAV Trajectory Design for Power Line Inspection

doi: 10.11999/JEIT231199
Funds:  The National Natural Science Foundation of China (62101389), The Science and Technology Projects of State Grid Hubei Electric Power Co., Ltd. (52153223000D), The Seed-fund Support Program at the WHU-DKU Joint Research Platform (WHUDKUZZJJ202201)
  • Received Date: 2023-10-31
  • Rev Recd Date: 2024-03-19
  • Available Online: 2024-04-10
  • Publish Date: 2024-05-30
  • Unmanned Aerial Vehicles (UAV) technology holds significant importance and offers extensive potential for application in the field of inspection. Taking into account the limited endurance of the UAV, it needs to fly from the nest to the designated inspection area, complete the inspection of the transmission tower, and then return to the nest safely before the battery is exhausted. For large-scale inspection scenarios, a multi-UAV inspection method is proposed to minimize the inspection time. In detail, the k-means++ algorithm is used to optimize task allocation of the UAVs and the modified simulated annealing algorithm is utilized to optimize the inspection trajectory to improve the inspection efficiency. Finally, based on the tower pole distribution data from a simulated real-world environment, the proposed algorithm is employed to assign tasks of the UAVs and design trajectories. The simulation results confirm that the proposed algorithm can significantly reduce the total inspection time through multi-UAV task allocation and trajectory design.
  • loading
  • [1]
    YANG Lei, FAN Junfeng, LIU Yanhong, et al. A review on state-of-the-art power line inspection techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9350–9365. doi: 10.1109/TIM.2020.3031194.
    [2]
    VLAHINIĆ S, FRANKOVIĆ D, ĐUROVIĆ M Ž, et al. Measurement uncertainty evaluation of transmission line parameters[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9002407. doi: 10.1109/TIM.2021.3070600.
    [3]
    KATRASNIK J, PERNUS F, and LIKAR B. A survey of mobile robots for distribution power line inspection[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 485–493. doi: 10.1109/TPWRD.2009.2035427.
    [4]
    DAI Lei, QI Juntong, HAN Jianda, et al. Camera selection for unmanned helicopter power line inspection[C]. IEEE PES Innovative Smart Grid Technologies, Tianjin, China, 2012: 1–4. doi: 10.1109/ISGT-Asia.2012.6303238.
    [5]
    SHAHRAKI A, TAHERKORDI A, HAUGEN O, et al. A survey and future directions on clustering: From WSNs to IoT and modern networking paradigms[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 2242–2274. doi: 10.1109/tnsm.2020.3035315.
    [6]
    XING Liudong. Reliability in internet of things: Current status and future perspectives[J]. IEEE Internet of Things Journal, 2020, 7(8): 6704–6721. doi: 10.1109/JIOT.2020.2993216.
    [7]
    徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363.

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics & Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363.
    [8]
    DI FRANCO C and BUTTAZZO G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints[J]. Journal of Intelligent & Robotic Systems, 2016, 83(3): 445–462. doi: 10.1007/s10846-016-0348-x.
    [9]
    LI Yan, CHEN Hai, ER M J, et al. Coverage path planning for UAVs based on enhanced exact cellular decomposition method[J]. Mechatronics, 2011, 21(5): 876–885. doi: 10.1016/j.mechatronics.2010.10.009.
    [10]
    CABREIRA T M, DI FRANCO C, FERREIRA P R, et al. Energy-aware spiral coverage path planning for UAV photogrammetric applications[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3662–3668. doi: 10.1109/LRA.2018.2854967.
    [11]
    ZHOU Zhenyu, ZHANG Chuntian, XU Chen, et al. Energy-efficient industrial internet of UAVs for power line inspection in smart grid[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2705–2714. doi: 10.1109/TII.2018.2794320.
    [12]
    吴官翰, 贾维敏, 赵建伟, 等. 基于多智能体强化学习的混合博弈模式下多无人机辅助通信系统设计[J]. 电子与信息学报, 2022, 44(3): 940–950. doi: 10.11999/JEIT210662.

    WU Guanhan, JIA Weimin, ZHAO Jianwei, et al. MARL-based design of multi-unmanned aerial vehicle assisted communication system with hybrid gaming mode[J]. Journal of Electronics & Information Technology, 2022, 44(3): 940–950. doi: 10.11999/JEIT210662.
    [13]
    张广驰, 严雨琳, 崔苗, 等. 无人机基站的飞行路线在线优化设计[J]. 电子与信息学报, 2021, 43(12): 3605–3611. doi: 10.11999/JEIT200525.

    ZHANG Guangchi, YAN Yulin, CUI Miao, et al. Online trajectory optimization for the UAV-mounted base stations[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3605–3611. doi: 10.11999/JEIT200525.
    [14]
    ZHAN Cheng and ZENG Yong. Energy minimization for cellular-connected UAV: From optimization to deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5541–5555. doi: 10.1109/TWC.2022.3142018.
    [15]
    ZHANG Wei, YANG Dingcheng, WU Fahui, et al. Trajectory design for UAV-based inspection system: A deep reinforcement learning approach[C]. 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023: 1654–1659. doi: 10.1109/ICCWorkshops57953.2023.10283670.
    [16]
    ZHANG Yu, LI Junfeng, ZHANG Litong, et al. Energy consumption optimal design of power grid inspection trajectory for UAV mobile edge computing node[C]. 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 2021: 1316–1321. doi: 10.1109/ACPEE51499.2021.9436834.
    [17]
    CAO Peng, LIU Yi, QIU Ming, et al. MEC-driven UAV routine inspection system in wind farm under wind influence[C]. 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA), Xiangtan, China, 2019: 672–677. doi: 10.1109/ICICTA49267.2019.00148.
    [18]
    MONWAR M, SEMIARI O, and SAAD W. Optimized path planning for inspection by unmanned aerial vehicles swarm with energy constraints[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–6,doi: 10.1109/GLOCOM.2018.8647342.
    [19]
    ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (390) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return