Citation: | GAO Yunfei, HU Yulin, LIU Mingliu, HUANG Yuxi, SUN Peng. Joint Multi-UAV Trajectory Design for Power Line Inspection[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1958-1967. doi: 10.11999/JEIT231199 |
[1] |
YANG Lei, FAN Junfeng, LIU Yanhong, et al. A review on state-of-the-art power line inspection techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9350–9365. doi: 10.1109/TIM.2020.3031194.
|
[2] |
VLAHINIĆ S, FRANKOVIĆ D, ĐUROVIĆ M Ž, et al. Measurement uncertainty evaluation of transmission line parameters[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9002407. doi: 10.1109/TIM.2021.3070600.
|
[3] |
KATRASNIK J, PERNUS F, and LIKAR B. A survey of mobile robots for distribution power line inspection[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 485–493. doi: 10.1109/TPWRD.2009.2035427.
|
[4] |
DAI Lei, QI Juntong, HAN Jianda, et al. Camera selection for unmanned helicopter power line inspection[C]. IEEE PES Innovative Smart Grid Technologies, Tianjin, China, 2012: 1–4. doi: 10.1109/ISGT-Asia.2012.6303238.
|
[5] |
SHAHRAKI A, TAHERKORDI A, HAUGEN O, et al. A survey and future directions on clustering: From WSNs to IoT and modern networking paradigms[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 2242–2274. doi: 10.1109/tnsm.2020.3035315.
|
[6] |
XING Liudong. Reliability in internet of things: Current status and future perspectives[J]. IEEE Internet of Things Journal, 2020, 7(8): 6704–6721. doi: 10.1109/JIOT.2020.2993216.
|
[7] |
徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363.
XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics & Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363.
|
[8] |
DI FRANCO C and BUTTAZZO G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints[J]. Journal of Intelligent & Robotic Systems, 2016, 83(3): 445–462. doi: 10.1007/s10846-016-0348-x.
|
[9] |
LI Yan, CHEN Hai, ER M J, et al. Coverage path planning for UAVs based on enhanced exact cellular decomposition method[J]. Mechatronics, 2011, 21(5): 876–885. doi: 10.1016/j.mechatronics.2010.10.009.
|
[10] |
CABREIRA T M, DI FRANCO C, FERREIRA P R, et al. Energy-aware spiral coverage path planning for UAV photogrammetric applications[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3662–3668. doi: 10.1109/LRA.2018.2854967.
|
[11] |
ZHOU Zhenyu, ZHANG Chuntian, XU Chen, et al. Energy-efficient industrial internet of UAVs for power line inspection in smart grid[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2705–2714. doi: 10.1109/TII.2018.2794320.
|
[12] |
吴官翰, 贾维敏, 赵建伟, 等. 基于多智能体强化学习的混合博弈模式下多无人机辅助通信系统设计[J]. 电子与信息学报, 2022, 44(3): 940–950. doi: 10.11999/JEIT210662.
WU Guanhan, JIA Weimin, ZHAO Jianwei, et al. MARL-based design of multi-unmanned aerial vehicle assisted communication system with hybrid gaming mode[J]. Journal of Electronics & Information Technology, 2022, 44(3): 940–950. doi: 10.11999/JEIT210662.
|
[13] |
张广驰, 严雨琳, 崔苗, 等. 无人机基站的飞行路线在线优化设计[J]. 电子与信息学报, 2021, 43(12): 3605–3611. doi: 10.11999/JEIT200525.
ZHANG Guangchi, YAN Yulin, CUI Miao, et al. Online trajectory optimization for the UAV-mounted base stations[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3605–3611. doi: 10.11999/JEIT200525.
|
[14] |
ZHAN Cheng and ZENG Yong. Energy minimization for cellular-connected UAV: From optimization to deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5541–5555. doi: 10.1109/TWC.2022.3142018.
|
[15] |
ZHANG Wei, YANG Dingcheng, WU Fahui, et al. Trajectory design for UAV-based inspection system: A deep reinforcement learning approach[C]. 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023: 1654–1659. doi: 10.1109/ICCWorkshops57953.2023.10283670.
|
[16] |
ZHANG Yu, LI Junfeng, ZHANG Litong, et al. Energy consumption optimal design of power grid inspection trajectory for UAV mobile edge computing node[C]. 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 2021: 1316–1321. doi: 10.1109/ACPEE51499.2021.9436834.
|
[17] |
CAO Peng, LIU Yi, QIU Ming, et al. MEC-driven UAV routine inspection system in wind farm under wind influence[C]. 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA), Xiangtan, China, 2019: 672–677. doi: 10.1109/ICICTA49267.2019.00148.
|
[18] |
MONWAR M, SEMIARI O, and SAAD W. Optimized path planning for inspection by unmanned aerial vehicles swarm with energy constraints[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–6,doi: 10.1109/GLOCOM.2018.8647342.
|
[19] |
ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
|