Citation: | LIU Zhiyong, JIN Zihao, YANG Hongjuan, LIU Biao, TANG Xinfeng, LI Bo. Deep Learning-based Joint Multi-branch Merging and Equalization Algorithm for Underwater Acoustic Channel[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2004-2010. doi: 10.11999/JEIT231196 |
[1] |
邵宗战. 现代水声通信技术发展探讨[J]. 科技创新与应用, 2022, 12(20): 152–155. doi: 10.19981/j.CN23-1581/G3.2022.20.036.
SHAO Zongzhan. Discussion on the development of modern hydroacoustic communication technology[J]. Technology Innovation and Application, 2022, 12(20): 152–155. doi: 10.19981/j.CN23-1581/G3.2022.20.036.
|
[2] |
XIE Lin, ZHAO Haili, TIAN Chengjun, et al. Comparison of several new improved variable-step LMS algorithms[C]. 2022 7th International Conference on Automation, Control and Robotics Engineering (CACRE), Xi’an, China, 2022: 229–233. doi: 10.1109/CACRE54574.2022.9834206.
|
[3] |
GUO Xiaochen, ZHANG Youwen, and ZHENG Wei. Variable forgetting factor RLS algorithm for mobile single carrier SIMO underwater acoustic communication[C]. Proceedings of SPIE 12615, International Conference on Signal Processing and Communication Technology (SPCT 2022), Harbin, China, 2023: 1261519. doi: 10.1117/12.2674104.
|
[4] |
CHENG Xing, LIU Dejun, WANG Chen, et al. Deep learning-based channel estimation and equalization scheme for FBMC/OQAM systems[J]. IEEE Wireless Communications Letters, 2019, 8(3): 881–884. doi: 10.1109/LWC.2019.2898437.
|
[5] |
CHEN S, GIBSON G J, COWAN C F N, et al. Adaptive equalization of finite non-linear channels using multilayer perceptrons[J]. Signal Processing, 1990, 20(2): 107–119. doi: 10.1016/0165-1684(90)90122-F.
|
[6] |
LAVANIA S, KUMAM B, MATEY P S, et al. Adaptive channel equalization using recurrent neural network under SUI channel model[C]. 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 2015: 1–6. doi: 10.1109/ICIIECS.2015.7193035.
|
[7] |
ZHANG Youwen, LI Junxuan, ZAKHAROV Y, et al. Deep learning based underwater acoustic OFDM communications[J]. Applied Acoustics, 2019, 154: 53–58. doi: 10.1016/j.apacoust.2019.04.023.
|
[8] |
JARUWATANADILOK S. Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory[J]. IEEE Press, 2008, 26(9): 1620–1627. doi: 10.1109/JSAC.2008.081202.
|
[9] |
STOJANOVIC M, CATIPOVIC J, and PROAKIS J G. Adaptive multichannel combining and equalization for underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 1993, 94(3): 1621–1631. doi: 10.1121/1.408135.
|
[10] |
CHOI J W, RIEDL T J, KIM K, et al. Adaptive linear turbo equalization over doubly selective channels[J]. IEEE Journal of Oceanic Engineering, 2011, 36(4): 473–489. doi: 10.1109/JOE.2011.2158013.
|
[11] |
LIU Zhiyong, WANG Yinghua, SONG Lizhong, et al. Joint adaptive combining and variable tap-length multiuser detector for underwater acoustic cooperative communication[J]. KSII Transactions on Internet and Information Systems, 2018, 12(1): 325–339. doi: 10.3837/tiis.2018.01.016.
|
[12] |
QARABAQI P and STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701–717. doi: 10.1109/JOE.2013.2278787.
|