Citation: | GONG Maoguo, LUO Tianshi, LI Hao, HE Yajing. A Survey of Collaborative of Swarm Intelligence for Evolutionary Computation[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1716-1741. doi: 10.11999/JEIT231195 |
[1] |
XU Qingzheng, WANG Na, WANG Lei, et al. Multi-task optimization and multi-task evolutionary computation in the past five years: A brief review[J]. Mathematics, 2021, 9(8): 864. doi: 10.3390/math9080864.
|
[2] |
VERMA S, PANT M, and SNASEL V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE Access, 2021, 9: 57757–57791. doi: 10.1109/ACCESS.2021.3070634.
|
[3] |
Osaba E, Del Ser J, Martinez A D, et al. Evolutionary multitask optimization: a methodological overview, challenges, and future research directions[J]. Cognitive Computation, 2022, 14(3): 927–954. doi: 10.1007/s12559-022-10012-8.
|
[4] |
XU Qian, XU Zhanqi, and MA Tao. A survey of multiobjective evolutionary algorithms based on decomposition: Variants, challenges and future directions[J]. IEEE Access, 2020, 8: 41588–41614. doi: 10.1109/ACCESS.2020.2973670.
|
[5] |
LIU Xiaotong, SUN Chaoli, and WANG Hao. A new infill criterion based on sorting of approximation uncertainty for expensive evolutionary many-objective optimization[C]. IEEE Congress on Evolutionary Computation (CEC), Chicago, USA, 2023: 1–8. doi: 10.1109/CEC53210.2023.10405862.
|
[6] |
NIMURA N and OYAMA A. Evolutionary topology optimization using quadtree genetic programming[C]. IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 2022: 1–8. doi: 10.1109/CEC55065.2022.9870331.
|
[7] |
ZHAO Yizhe, LI Hao, WU Yue, et al. Endmember selection of hyperspectral images based on evolutionary multitask[C]. IEEE Congress on evolutionary computation (CEC), Glasgow, UK, 2020: 1–7. doi: 10.1109/CEC48606.2020.9185673.
|
[8] |
徐康宇, 刘元, 李密青, 等. 进化高维多目标优化研究综述[J]. 控制工程, 2023, 30(8): 1436–1449. doi: 10.14107/j.cnki.kzgc.20230186.
XU Kangyu, LIU Yuan, LI Miqing, et al. Evolutionary many-objective optimization: A survey[J]. Control Engineering of China, 2023, 30(8): 1436–1449. doi: 10.14107/j.cnki.kzgc.20230186.
|
[9] |
MA Xiaoliang, LI Xiaodong, ZHANG Qingfu, et al. A survey on cooperative co-evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3): 421–441. doi: 10.1109/TEVC.2018.2868770.
|
[10] |
张峰, 陈新中. 连续昂贵多目标优化问题综述[J]. 软件导刊, 2023, 22(5): 248–252. doi: 10.11907/rjdk.221626.
ZHANG Feng and CHEN Xinzhong. Survey of continuous expensive Multiobjective optimization problems[J]. Software Guide, 2023, 22(5): 248–252. doi: 10.11907/rjdk.221626.
|
[11] |
冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43(6): 745–753. doi: 10.13374/j.issn2095-9389.2020.10.31.001.
FENG Qian, LI Qing, QUAN Wei, et al. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745–753. doi: 10.13374/j.issn2095-9389.2020.10.31.001.
|
[12] |
TIAN Ye, SI Langchun, ZHANG Xingyi, et al. Evolutionary large-scale multi-objective optimization: A survey[J]. ACM Computing Surveys, 2022, 54(8): 174. doi: 10.1145/3470971.
|
[13] |
高卫峰, 刘玲玲, 王振坤, 等. 基于分解的演化多目标优化算法综述[J]. 软件学报, 2023, 34(10): 4743–4771. doi: 10.13328/ j.cnki.jos.006672.
GAO Weifeng, LIU Lingling, WANG Zhenkun, et al. Survey on multiobjective optimization evolutionary algorithm based on decomposition[J]. Journal of Software, 2023, 34(10): 4743–4771. doi: 10.13328/j.cnki.jos.006672.
|
[14] |
张维海, 彭称称, 蒋秀珊. 多目标动态优化中Pareto随机合作博弈研究综述[J]. 控制与决策, 2023, 38(7): 1789–1801. doi: 10.13195/j.kzyjc.2022.2097.
ZHANG Weihai, PENG Chengcheng, and JIANG Xiushan. Pareto stochastic cooperative games in multiobjective dynamic optimization problems: A survey[J]. Control and Decision, 2023, 38(7): 1789–1801. doi: 10.13195/j.kzyjc.2022.2097.
|
[15] |
LIANG Jing, BAN Xuanxuan, YU Kunjie, et al. A survey on evolutionary constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(2): 201–221. doi: 10.1109/TEVC.2022.3155533.
|
[16] |
李豪, 汪磊, 张元侨, 等. 演化多任务优化研究综述[J]. 软件学报, 2023, 34(2): 509–538. doi: 10.13328/j.cnki.jos.006704.
LI Hao, WANG Lei, ZHANG Yuanqiao, et al. Survey of evolutionary multitasking optimization[J]. Journal of Software, 2023, 34(2): 509–538. doi: 10.13328/j.cnki.jos.006704.
|
[17] |
TAN Ziying, LUO Linbo, and ZHONG Jinghui. Knowledge transfer in evolutionary multi-task optimization: A survey[J]. Applied Soft Computing, 2023, 138: 110182. doi: 10.1016/j.asoc.2023.110182.
|
[18] |
程美英, 钱乾, 倪志伟. 多任务优化算法综述[J]. 控制与决策, 2023, 38(7): 1802–1815. doi: 10.13195/j.kzyjc.2021.1754.
CHENG Meiying, QIAN Qian, and NI Zhiwei. Review of multi-task optimization algorithm[J]. Control and Decision, 2023, 38(7): 1802–1815. doi: 10.13195/j.kzyjc.2021.1754.
|
[19] |
WEI Tingyang, WANG Shibin, ZHONG Jinghui, et al. A review on evolutionary multitask optimization: Trends and challenges[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(5): 941–960. doi: 10.1109/TEVC.2021.3139437.
|
[20] |
王丽萍, 林豪, 潘笑天, 等. 基于决策变量交互识别的多目标优化算法[J]. 浙江工业大学学报, 2021, 49(4): 355–367. doi: 10.3969/j.issn.1006-4303.2021.04.001.
WANG Liping, LIN Hao, PAN Xiaotian, et al. Multi-objective optimization algorithm based on interactive identification of decision variables[J]. Journal of Zhejiang University of Technology, 2021, 49(4): 355–367. doi: 10.3969/j.issn.1006-4303.2021.04.001.
|
[21] |
白晓慧, 何小娟, 孙超利, 等. 基于决策变量分组的粒子群算法求解大规模优化问题[J]. 宁夏师范学院学报, 2020, 41(4): 50–56. doi: 10.3969/j.issn.1674-1331.2020.04.008.
BAI Xiaohui, HE Xiaojuan, SUN Chaoli, et al. Particle swarm optimization algorithm based on grouping of decision variables to solve large-scale optimization problems[J]. Journal of Ningxia Normal University, 2020, 41(4): 50–56. doi: 10.3969/j.issn.1674-1331.2020.04.008.
|
[22] |
林涛, 霍丽娜. 基于变量分组的大规模多目标优化算法[J]. 郑州大学学报:理学版, 2018, 50(4): 8–13. doi: 10.13705/j.issn.1671-6841.2018037.
LIN Tao and HUO Lina. Based on variable grouping for large-scale many-objective optimization algorithm[J]. Journal of Zhengzhou University:Natural Science Edition, 2018, 50(4): 8–13. doi: 10.13705/j.issn.1671-6841.2018037.
|
[23] |
邱飞岳, 胡烜, 王丽萍. 关联变量分组的分解多目标进化算法及其应用[J]. 小型微型计算机系统, 2018, 39(4): 644–650. doi: 10.3969/j.issn.1000-1220.2018.04.005.
QIU Feiyue, HU Xuan, and WANG Liping. Multi-objective evolutionary algorithm based on decomposition using interacting variables grouping and its application[J]. Journal of Chinese Computer Systems, 2018, 39(4): 644–650. doi: 10.3969/j.issn.1000-1220.2018.04.005.
|
[24] |
邱飞岳, 胡烜, 王丽萍. 关联变量分组的分解多目标进化算法研究[J]. 计算机科学, 2017, 44(12): 202–210. doi: 10.11896/j.issn.1002-137X.2017.12.037.
QIU Feiyue, HU Xuan, and WANG Liping. Research on multi-objective evolutionary algorithm based on decomposition using interacting variables grouping[J]. Computer Science, 2017, 44(12): 202–210. doi: 10.11896/j.issn.1002-137X.2017.12.037.
|
[25] |
LI Xiaodong and YAO Xin. Cooperatively coevolving particle swarms for large scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(2): 210–224. doi: 10.1109/TEVC.2011.2112662.
|
[26] |
YANG Zhenyu, TANG Ke, and YAO Xin. Differential evolution for high-dimensional function optimization[C]. IEEE Congress on Evolutionary Computation, Singapore, 2007: 3523–3530. doi: 10.1109/CEC.2007.4424929.
|
[27] |
YANG Zhenyu, TANG Ke, and YAO Xin. Multilevel cooperative coevolution for large scale optimization[C]. IEEE Congress on Evolutionary Computation, Hong Kong, China, 2008: 1663–1670. doi: 10.1109/CEC.2008.4631014.
|
[28] |
TRUNFIO G A. Enhancing the firefly algorithm through a cooperative coevolutionary approach: An empirical study on benchmark optimisation problems[J]. International Journal of Bio-Inspired Computation, 2014, 6(2): 108–125. doi: 10.1504/IJBIC.2014.060621.
|
[29] |
TRUNFIO G A, TOPA P, and WAS J. A new algorithm for adapting the configuration of subcomponents in large-scale optimization with cooperative coevolution[J]. Information Sciences, 2016, 372: 773–795. doi: 10.1016/j.ins.2016.08.080.
|
[30] |
MEI Yi, OMIDVAR M N, LI Xiaodong, et al. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization[J]. ACM Transactions on Mathematical Software, 2016, 42(2): 1–24. doi: 10.1145/2791291.
|
[31] |
STRASSER S, SHEPPARD J, FORTIER N, et al. Factored evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 281–293. doi: 10.1109/TEVC.2016.2601922.
|
[32] |
SUN Liang, YOSHIDA S, CHENG Xiaochun, et al. A cooperative particle swarm optimizer with statistical variable interdependence learning[J]. Information Sciences, 2012, 186(1): 20–39. doi: 10.1016/j.ins.2011.09.033.
|
[33] |
ZHANG Qingfu. On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 80–93. doi: 10.1109/TEVC.2003.819431.
|
[34] |
PELIKAN M and MÜHLENBEIN H. The bivariate marginal distribution algorithm[C]. Engineering Design and Manufacturing on Advances in Soft Computing, London, UK, 1999: 521–535. doi: 10.1007/978-1-4471-0819-1_39.
|
[35] |
DE BONET J S, ISBELL C L, and VIOLA P. MIMIC: Finding optima by estimating probability densities[C]. The 9th International Conference on Neural Information Processing Systems, Denver, USA, 1996: 424–430. doi: 10.5555/2998981.2999041.
|
[36] |
YU Tianli, GOLDBERG D E, SASTRY K, et al. Dependency structure matrix, genetic algorithms, and effective recombination[J]. Evolutionary Computation, 2009, 17(4): 595–626. doi: 10.1162/evco.2009.17.4.17409.
|
[37] |
POTTER M A and DE JONG K A. A cooperative coevolutionary approach to function optimization[C]. International Conference on Parallel Problem Solving from Nature, Jerusalem, Israel, 1994: 249–257. doi: 10.1007/3-540-58484-6_269.
|
[38] |
VAN DEN BERGH F and ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225–239. doi: 10.1109/TEVC.2004.826069.
|
[39] |
ZHENG Yujun and CHEN Shengyong. Cooperative particle swarm optimization for multiobjective transportation planning[J]. Applied Intelligence, 2013, 39(1): 202–216. doi: 10.1007/s10489-012-0405-5.
|
[40] |
SAYED E, ESSAM D, and SARKER R. Dependency identification technique for large scale optimization problems[C]. 2012 IEEE Congress on Evolutionary Computation, Brisbane, Australia, 2012: 1–8. doi: 10.1109/CEC.2012.6256117.
|
[41] |
赵楷文, 王鹏, 童向荣. 基于双阶段搜索的约束进化多任务优化算法[J]. 计算机应用, 2024, 44(5): 1415–1422.
ZHAO Kaiwen, WANG Peng, and TONG Xianggrong. Two-stage search-based constrained evolutionary multitasking optimization algorithm[J]. Journal of Computer Applications, 2024, 44(5): 1415–1422.
|
[42] |
RAHNAMAYAN S, TIZHOOSH H R, and SALAMA M M A. A novel population initialization method for accelerating evolutionary algorithms[J]. Computers & Mathematics with Applications, 2007, 53(10): 1605–1614. doi: 10.1016/j.camwa.2006.07.013.
|
[43] |
KANG R G and JUNG C Y. The optimal solution of TSP using the new mixture initialization and sequential transformation method in genetic algorithm[C]. 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China, 2006: 1181–1185. doi: 10.1007/978-3-540-36668-3_157.
|
[44] |
GUTIN G and KARAPETYAN D. Generalized traveling salesman problem reduction algorithms[J]. arXiv: 0804.0735, 2008. doi: 10.48550/arXiv.0804.0735.
|
[45] |
杨磊, 张苏, 黄博, 等. 多任务协同优化学习高分辨SAR稀疏自聚焦成像算法[J]. 电子与信息学报, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300.
YANG Lei, ZHANG Su, HUANG Bo, et al. Multi-task learning of sparse Autofocusing for high-resolution SAR imagery[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300.
|
[46] |
ISHIBUCHI H and YAMAMOTO T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining[J]. Fuzzy Sets and Systems, 2004, 141(1): 59–88. doi: 10.1016/S0165-0114(03)00114-3.
|
[47] |
BLUM C, COTTA C, FERNÁNDEZ A J, et al. Hybridizations of metaheuristics with branch & bound derivates[M]. BLUM C, AGUILERA M J B, ROLI A, et al. Hybrid Metaheuristics: An Emerging Approach to Optimization. Berlin, Germany, 2008: 85–116. doi: 10.1007/978-3-540-78295-7_4.
|
[48] |
ALVARENGA G B, MATEUS G R, and DE TOMI G. Finding near optimal solutions for vehicle routing problems with time windows using hybrid genetic algorithm[C]. International Workshop Freight Transportation, Palermo, Italy, 2003: 113.
|
[49] |
GALLARDO J E, COTTA C, and FERNÁNDEZ A J. Finding low autocorrelation binary sequences with memetic algorithms[J]. Applied Soft Computing, 2009, 9(4): 1252–1262. doi: 10.1016/j.asoc.2009.03.005.
|
[50] |
NERI F, KOTILAINEN N, and VAPA M. A memetic-neural approach to discover resources in P2P networks[M]. COTTA C and HEMERT J. Recent Advances in Evolutionary Computation for Combinatorial Optimization. Berlin, Germany, 2008: 113–129. doi: 10.1007/978-3-540-70807-0_8.
|
[51] |
LARA A, SANCHEZ G, COELLO C A C, et al. HCS: A new local search strategy for memetic multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(1): 112–132. doi: 10.1109/TEVC.2009.2024143.
|
[52] |
CAPONIO A, NERI F, and TIRRONEN V. Super-fit control adaptation in memetic differential evolution frameworks[J]. Soft Computing, 2009, 13(8): 811–831. doi: 10.1007/s00500-008-0357-1.
|
[53] |
KRASNOGOR N and GUSTAFSON S. A study on the use of self-generation in memetic algorithms[J]. Natural Computing, 2004, 3(1): 53–76. doi: 10.1023/B:NACO.0000023419.83147.67.
|
[54] |
王志鸿, 王高才, 赵启飞. 基于改进NSGA-III的D2D协同MEC多目标优化研究[J]. 计算机科学, 2024, 51(3): 280–288. doi: 10.11896/jsjkx.221100250.
WANG Zhihong, WANG Gaocai, and ZHAO Qifei. Multi-objective optimization of D2D collaborative MEC based on improved NSGA-III[J]. Computer Science, 2024, 51(3): 280–288. doi: 10.11896/jsjkx.221100250.
|
[55] |
李雪莹, 刘青青, 范勤勤. 基于算法自动选择的自适应约束多目标进化算法[J]. 控制工程, 2023: 1–9. doi: 10.14107/j.cnki.kzgc.20220224.
LI Xueying, LIU Qingqing, and FAN Qinqin. Self-adaptive constrained multi-objective evolutionary algorithm based on algorithm automation selection[J]. Control Engineering of China, 2023: 1–9. doi: 10.14107/j.cnki.kzgc.20220224.
|
[56] |
程雪峰, 董明刚. 基于RNN信息累积的动态多目标优化算法[J]. 计算机科学, 2023, 45(10): 1–12.
CHENG Xuefeng and DONG Minggang. Dynamic multi-objective optimization algorithm based on RNN information accumulation[J]. Computer Science, 2023, 45(10): 1–12.
|
[57] |
GOLBERG D E. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Boston, USA: Addison-Wesley, 1989: 36.
|
[58] |
ZHANG Qingfu and LI Hui. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712–731. doi: 10.1109/TEVC.2007.892759.
|
[59] |
白富生, 陈姣伶. 基于聚类的昂贵多目标优化代理辅助进化算法[J]. 运筹学学报, 2022, 26(4): 31–42. doi: 10.15960/j.cnki.issn.1007-6093.2022.04.003.
BAI Fusheng and CHEN Jiaoling. A clustering-based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization[J]. Operations Research Transactions, 2022, 26(4): 31–42. doi: 10.15960/j.cnki.issn.1007-6093.2022.04.003.
|
[60] |
HAN Honggui, FU Shijia, SUN Haoyuan, et al. Hierarchical nonlinear model predictive control with multi-time-scale for wastewater treatment process[J]. Journal of Process Control, 2021, 108: 125–135. doi: 10.1016/j.jprocont.2021.11.002.
|
[61] |
FAN Qinqin, ZHANG Yilian, and LI Ning. An autoselection strategy of multiobjective evolutionary algorithms based on performance indicator and its application[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 2422–2436. doi: 10.1109/TASE.2021.3084741.
|
[62] |
DONG Zhiming, WANG Xianpeng, and TANG Lixin. Color-coating scheduling with a multiobjective evolutionary algorithm based on decomposition and dynamic local search[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(4): 1590–1601. doi: 10.1109/TASE.2020.3011428.
|
[63] |
ALHARBI M, HONG Peiying, and LALEG-KIRATI T M. Sliding window neural network based sensing of bacteria in wastewater treatment plants[J]. Journal of Process Control, 2022, 110: 35–44. doi: 10.1016/j.jprocont.2021.12.006.
|
[64] |
焦大利, 姚亦飞, 王成章, 等. 基于双分类器辅助进化的多目标优化算法[J]. 北华大学学报:自然科学版, 2023, 24(5): 664–670. doi: 10.11713/j.issn.1009-4822.2023.05.020.
JIAO Dali, YAO Yifei, WANG Chengzhang, et al. Multi-objective optimization evolutionary algorithm based on double classifier-assisted evolution[J]. Journal of Beihua University:Natural Science, 2023, 24(5): 664–670. doi: 10.11713/j.issn.1009-4822.2023.05.020.
|
[65] |
HORN J, NAFPLIOTIS N, and GOLDBERG D E. A niched Pareto genetic algorithm for multiobjective optimization[C]. The 1st IEEE Conference on Evolutionary Computation, Orlando, USA, 1994: 82–87. doi: 10.1109/ICEC.1994.350037.
|
[66] |
SRINIVAS N and DEB K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221–248. doi: 10.1162/evco.1994.2.3.221.
|
[67] |
王旭健, 张峰干, 姚敏立. 基于聚类引导和目标值和的高维多目标进化算法[J]. 控制与决策, 2023, 38(10): 1–9. doi: 10.13195/j.kzyjc.2023.0596.
WANG Xujian, ZHANG Fenggan, and YAO Minli. A many-objective evolutionary algorithm based on clustering and the sum of objectives[J]. Control and Decision, 2023, 38(10): 1–9. doi: 10.13195/j.kzyjc.2023.0596.
|
[68] |
曹嘉乐, 杨磊, 田井林, 等. 面向高维多目标优化的双阶段双种群进化算法[J]. 计算机工程与应用, 2024, 60(9): 159–171.
CAO Jiale, YANG Lei, TIAN Jinglin, et al. Dual-stage dual-population evolutionary algorithm for many-objective optimization[J]. Computer Engineering and Applications, 2024, 60(9): 159–171.
|
[69] |
高梦琦, 冯翔, 虞慧群, 等. 基于在线学习稀疏特征的大规模多目标进化算法[J]. 计算机科学, 2024, 51(3): 56–62. doi: 10.11896/jsjkx.230100004.
GAO Mengqi, FENG Xiang, YU Huiqun, et al. Large-scale multi-objective evolutionary algorithm based on online learning of sparse features[J]. Computer Science, 2024, 51(3): 56–62. doi: 10.11896/jsjkx.230100004.
|
[70] |
谢承旺, 潘嘉敏, 郭华, 等. 一种采用混合策略的大规模多目标进化算法[J]. 计算机学报, 2024, 47(1): 69–89. doi: 10.11897/SP.J.1016.2024.00069.
XIE Chengwang, PAN Jiamin, GUO Hua, et al. A large scale multi-objective evolutionary algorithm adopting hybrid strategies[J]. Chinese Journal of Computers, 2024, 47(1): 69–89. doi: 10.11897/SP.J.1016.2024.00069.
|
[71] |
SATO H, AGUIRRE H E, and TANAKA K. Controlling dominance area of solutions and its impact on the performance of MOEAs[C]. 4th International Conference on Evolutionary Multi-criterion Optimization, Matsushima, Japan, 2007: 5–20. doi: 10.1007/978-3-540-70928-2_5.
|
[72] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017.
|
[73] |
DRECHSLER N, DRECHSLER R, and BECKER B. Multi-objective optimisation based on relation favour[C]. Proceedings of the First International Conference on Evolutionary Multi-criterion Optimization, Zurich, Switzerland, 2001: 154–166. doi: 10.1007/3-540-44719-9_11.
|
[74] |
SÜLFLOW A, DRECHSLER N, and DRECHSLER R. Robust multi-objective optimization in high dimensional spaces[C]. 4th International Conference on Evolutionary Multi-criterion Optimization, Matsushima, Japan, 2007: 715–726. doi: 10.1007/978-3-540-70928-2_54.
|
[75] |
王松波. 考虑帕累托最优解的多目标优化进化算法[J]. 数学的实践与认识, 2022, 52(9): 132–146.
WANG Songbo. Multi-objective optimization evolutionary algorithm considering Pareto optimal solution[J]. Mathematics in Practice and Theory, 2022, 52(9): 132–146.
|
[76] |
梁正平, 林万鹏, 胡凯峰, 等. 基于帕累托前沿面曲率预估的超多目标进化算法[J]. 软件学报, 2023, 34(9): 4096–4113. doi: 10.13328/j.cnki.jos.006648.
LIANG Zhengping, LIN Wanpeng, HU Kaifeng, et al. Many-objective evolutionary algorithm based on curvature estimation of Pareto front[J]. Journal of Software, 2023, 34(9): 4096–4113. doi: 10.13328/j.cnki.jos.006648.
|
[77] |
FLEMING P J, PURSHOUSE R C, and LYGOE R J. Many-objective optimization: An engineering design perspective[C]. 3rd International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 2005: 14–32. doi: 10.1007/978-3-540-31880-4_2.
|
[78] |
DEB K and SUNDAR J. Reference point based multi-objective optimization using evolutionary algorithms[C]. The 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, USA, 2006: 635–642. doi: 10.1145/1143997.1144112.
|
[79] |
谢根琳, 程国振, 梁浩, 等. 基于多目标优化算法NSGA-II的软件多样化组合方法[J]. 计算机科学, 2023, 45(10): 1–15.
XIE Genlin, CHENG Guozhen, LAING Hao, et al. Software diversity composition based on multi-objective optimization algorithm NSGA-II[J]. Computer Science, 2023, 45(10): 1–15.
|
[80] |
ORTIZ-MARTÍNEZ V M, MARTÍNEZ-FRUTOS J, HONTORIA E, et al. Multiplicity of solutions in model-based multiobjective optimization of wastewater treatment plants[J]. Optimization and Engineering, 2021, 22(2): 1–16. doi: 10.1007/s11081-020-09500-3.
|
[81] |
HAN Honggui, LIU Zheng, LU Wei, et al. Dynamic MOPSO-based optimal control for wastewater treatment process[J]. IEEE Transactions on Cybernetics, 2021, 51(5): 2518–2528. doi: 10.1109/TCYB.2019.2925534.
|
[82] |
张继旺, 刘锁, 龚庶, 等. 基于改进多目标粒子群的大型设备群检测策略优化方法[J]. 机电工程, 2024, 41(3): 504–511.
ZHANG Jiwang, LIU Suo, GONG Shu, et al. Detection strategy optimization of large equipment group based on improved MOPSO algorithm[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(3): 504–511.
|
[83] |
刘海林, 肖俊荣. 基于分解和超平面拟合的进化超多目标优化降维算法[J]. 电子与信息学报, 2022, 44(9): 3289–3298. doi: 10.11999/JEIT210605.
LIU Hailin and XIAO Junrong. Objective reduction algorithm based on decomposition and hyperplane approximation for evolutionary many-objective optimization[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3289–3298. doi: 10.11999/JEIT210605.
|
[84] |
DEB K and SAXENA D. Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems[C]. IEEE Congress on Evolutionary Computation, Los Alamitos, USA, 2006: 3352–3360.
|
[85] |
BROCKHOFF D and ZITZLER E. Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods[C]. IEEE Congress on Evolutionary Computation, Singapore, 2007: 2086–2093. doi: 10.1109/CEC.2007.4424730.
|
[86] |
TAN K C, FENG Liang, and JIANG Min. Evolutionary transfer optimization—A new frontier in evolutionary computation research[J]. IEEE Computational Intelligence Magazine, 2021, 16(1): 22–33. doi: 10.1109/MCI.2020.3039066.
|
[87] |
ZHAN Zhihui, SHI Lin, TAN K C, et al. A survey on evolutionary computation for complex continuous optimization[J]. Artificial Intelligence Review, 2022, 55(1): 59–110. doi: 10.1007/s10462-021-10042-y.
|
[88] |
ZHAN Zhihui, ZHANG Jun, LIN Ying, et al. Matrix-based evolutionary computation[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(2): 315–328. doi: 10.1109/TETCI.2020.3047410.
|
[89] |
LI Jianyu, ZHAN Zhihui, TAN K C, et al. A meta-knowledge transfer-based differential evolution for multitask optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(4): 719–734. doi: 10.1109/TEVC.2021.3131236.
|
[90] |
LI Jianyu, ZHAN Zhihui, XU Jin, et al. Surrogate-assisted hybrid-model estimation of distribution algorithm for mixed-variable hyperparameters optimization in convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(5): 2338–2352. doi: 10.1109/TNNLS.2021.3106399.
|
[91] |
BALI K K, GUPTA A, ONG Y S, et al. Cognizant multitasking in multiobjective multifactorial evolution: MO-MFEA-II[J]. IEEE Transactions on Cybernetics, 2021, 51(4): 1784–1796. doi: 10.1109/TCYB.2020.2981733.
|
[92] |
LI Jianyu, ZHAN Zhihui, WANG Hua, et al. Data-driven evolutionary algorithm with perturbation-based ensemble surrogates[J]. IEEE Transactions on Cybernetics, 2021, 51(8): 3925–3937. doi: 10.1109/TCYB.2020.3008280.
|
[93] |
LI Jianyu, ZHAN Zhihui, LIU Rundong, et al. Generation-level parallelism for evolutionary computation: A pipeline-based parallel particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2021, 51(10): 4848–4859. doi: 10.1109/TCYB.2020.3028070.
|
[94] |
SUN Jianyong, LIU Xin, BÄCK T, et al. Learning adaptive differential evolution algorithm from optimization experiences by policy gradient[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 666–680. doi: 10.1109/TEVC.2021.3060811.
|
[95] |
葛媛媛, 陈得宝, 邹锋. 多群多策略差分大规模多目标优化算法[J]. 控制与决策, 2024, 39(2): 429–439. doi: 10.13195/j.kzyjc.2022.1154.
GE Yuanyuan, CHEN Debao, and ZOU Feng. A large-scale multi-objective optimization based on multi-population and multi-strategy differential algorithm[J]. Control and Decision, 2024, 39(2): 429–439. doi: 10.13195/j.kzyjc.2022.1154.
|
[96] |
LIU Xiaofang, ZHAN Zhihui, and ZHANG Jun. Resource-aware distributed differential evolution for training expensive neural-network-based controller in power electronic circuit[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(11): 6286–6296. doi: 10.1109/TNNLS.2021.3075205.
|
[97] |
YANG Ming, ZHOU Aimin, LI Changhe, et al. An efficient recursive differential grouping for large-scale continuous problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 159–171. doi: 10.1109/TEVC.2020.3009390.
|
[98] |
CHEN Zonggan, LIN Ying, GONG Yuejiao, et al. Maximizing lifetime of range-adjustable wireless sensor networks: A neighborhood-based estimation of distribution algorithm[J]. IEEE Transactions on Cybernetics, 2021, 51(11): 5433–5444. doi: 10.1109/TCYB.2020.2977858.
|
[99] |
ZHANG Xin, ZHAN Zhihui, FANG Wei, et al. Multipopulation ant colony system with knowledge-based local searches for multiobjective supply chain configuration[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(3): 512–526. doi: 10.1109/TEVC.2021.3097339.
|
[100] |
FENG Liang, ZHOU Wei, LIU Weichen, et al. Solving dynamic multiobjective problem via autoencoding evolutionary search[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 2649–2662. doi: 10.1109/TCYB.2020.3017017.71.
|
[101] |
程美英, 钱乾, 熊伟清. 信息迁移多任务优化共生生物搜索算法[J]. 计算机应用, 2023, 43(7): 2237–2247. doi: 10.11772/j.issn.1001-9081.2022060896.
CHENG Meiying, QIAN Qian, and XIONG Weiqing. Symbiotic organisms search algorithm for information transfer multi-task optimization[J]. Journal of Computer Applications, 2023, 43(7): 2237–2247. doi: 10.11772/j.issn.1001-9081.2022060896.
|
[102] |
GUPTA A, ONG Y S, and FENG Liang. Multifactorial evolution: Toward evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 343–357. doi: 10.1109/TEVC.2015.2458037.
|
[103] |
FENG Liang, ZHOU Lei, ZHONG Jinghui, et al. Evolutionary multitasking via explicit autoencoding[J]. IEEE Transactions on Cybernetics, 2019, 49(9): 3457–3470. doi: 10.1109/TCYB.2018.2845361.
|
[104] |
YUAN Yuan, ONG Y S, GUPTA A, et al. Evolutionary multitasking in permutation-based combinatorial optimization problems: Realization with TSP, QAP, LOP, and JSP[C]. 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016: 3157–3164. doi: 10.1109/TENCON.2016.7848632.
|
[105] |
程美英, 钱乾, 倪志伟, 等. 信息筛选多任务优化自组织迁移算法[J]. 计算机应用, 2021, 41(6): 1748–1755. doi: 10.11772/j.issn.1001-9081.2020091390.
CHENG Meiying, QIAN Qian, NI Zhiwei, et al. Self-organized migrating algorithm for multi-task optimization with information filtering[J]. Journal of Computer Applications, 2021, 41(6): 1748–1755. doi: 10.11772/j.issn.1001-9081.2020091390.
|
[106] |
程美英, 钱乾, 倪志伟. 基于种群多样性控制的多级信息迁移多任务优化粒子群算法[J]. 控制与决策, 2024, 39(3): 728–738. doi: 10.13195/j.kzyjc.2022.1195.
CHENG Meiying, QIAN Qian, and NI Zhiwei. Multi-level information transfer multi-task PSO based on population diversity control[J]. Control and Decision, 2024, 39(3): 728–738. doi: 10.13195/j.kzyjc.2022.1195.
|
[107] |
BALI K K, ONG Y S, GUPTA A, et al. Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(1): 69–83. doi: 10.1109/TEVC.2019.2906927.
|
[108] |
LIN Jiabin, LIU Hailin, TAN K C, et al. An effective knowledge transfer approach for multiobjective multitasking optimization[J]. IEEE Transactions on Cybernetics, 2020, 51(6): 3238–3248. doi: 10.1109/TCYB.2020.2969025.
|
[109] |
马慧, 冯翔, 虞慧群. 基于两层知识迁移的多代理多任务优化方法[J]. 计算机科学, 2023, 50(10): 203–213. doi: 10.11896/jsjkx.220900242.
MA Hui, FENG Xiang, and YU Huiqun. Multi-surrogate multi-task optimization approach based on two-layer knowledge transfer[J]. Computer Science, 2023, 50(10): 203–213. doi: 10.11896/jsjkx.220900242.
|
[110] |
SONG Hui, QIN A K, TSAI P W, et al. Multitasking multi-swarm optimization[C]. IEEE Congress on Evolutionary Computation, Wellington, New Zealand, 2019: 1937–1944. doi: 10.1109/CEC.2019.8790009.
|
[111] |
YIN Jian, ZHU Anmin, ZHU Zexuan, et al. Multifactorial evolutionary algorithm enhanced with cross-task search direction[C]. The IEEE Congress on Evolutionary Computation, Wellington, New Zealand, 2019: 2244–2251. doi: 10.1109/CEC.2019.8789959.
|
[112] |
FENG Yinglan, FENG Liang, HOU Yaqing, et al. Large-scale optimization via evolutionary multitasking assisted random embedding[C]. The IEEE Congress on Evolutionary Computation, Glasgow, UK, 2020: 1–8. doi: 10.1109/CEC48606.2020.9185660.
|
[113] |
LIANG Zhengping, DONG Hao, LIU Cheng, et al. Evolutionary multitasking for multiobjective optimization with subspace alignment and adaptive differential evolution[J]. IEEE Transactions on Cybernetics, 2022, 52(4): 2096–2109. doi: 10.1109/TCYB.2020.2980888.
|
[114] |
CHEN Zefeng, ZHOU Yuren, and HE Xiaoyu. Learning task relationships in evolutionary multitasking for multiobjective continuous optimization[J]. IEEE Transactions on Cybernetics, 2020, 52(6): 5278–5289. doi: 10.1109/TCYB.2020.3029176.
|
[115] |
TANG Zedong, GONG Maoguo, WU Yue, et al. Regularized evolutionary multitask optimization: Learning to intertask transfer in aligned subspace[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 262–276. doi: 10.1109/TEVC.2020.3023480.
|
[116] |
SEENIVASAN L, MITHERAN S, ISLAM M, et al. Global-reasoned multi-task learning model for surgical scene understanding[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3858–3865. doi: 10.1109/LRA.2022.3146544.
|
[117] |
LIU Yiqi, YUAN Jingyi, CAI Baoping, et al. Multi-step and multi-task learning to predict quality-related variables in wastewater treatment processes[J]. Process Safety and Environmental Protection, 2023, 180: 404–416. doi: 10.1016/j.psep.2023.10.015.
|
[118] |
BA-ALAWI A H, AL-MASNI M A, and YOO C. Simultaneous sensor fault diagnosis and reconstruction for intelligent monitoring in wastewater treatment plants: An explainable deep multi-task learning model[J]. Journal of Water Process Engineering, 2023, 55: 104119. doi: 10.1016/j.jwpe.2023.104119.
|
[119] |
HAN Honggui, BAI Xing, YANG Hongyan, et al. Multitask particle swarm optimization with dynamic transformation[J]. IEEE Transactions on Emerging Topics in Computing, 2023, 11(3): 749–763. doi: 10.1109/TETC.2023.3268182.
|
[120] |
HAN Honggui, BAI Xing, HOU Ying, et al. Adaptive multi-task optimization strategy for wastewater treatment process[J]. Journal of Process Control, 2022, 119: 44–54. doi: 10.1016/j.jprocont.2022.09.007.
|
[121] |
唐枫, 冯翔, 虞慧群. 基于自适应知识迁移与资源分配的多任务协同优化算法[J]. 计算机科学, 2022, 49(7): 254–262. doi: 10.11896/jsjkx.210600184.
TANG Feng, FENG Xiang, and YU Huiqun. Multi-task cooperative optimization algorithm based on adaptive knowledge transfer and resource allocation[J]. Computer Science, 2022, 49(7): 254–262. doi: 10.11896/jsjkx.210600184.
|
[122] |
GU A, LU Songtao, RAM P, et al. Min-max bilevel multi-objective optimization with applications in machine learning[J]. arXiv: 2203.01924, 2022. doi: 10.48550/arXiv.2203.01924.
|
[123] |
HU Quanqi, ZHONG Yongjian, and YANG Tianbao. Multi-block min-max bilevel optimization with applications in multi-task deep AUC maximization[C]. Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 29552–29565.
|
[124] |
邱鸿辉, 刘海林, 陈磊. 基于协方差矩阵调整的多目标多任务优化算法[J]. 计算机工程, 2022, 48(8): 306–312. doi: 10.19678/j.issn.1000-3428.0062365.
QIU Honghui, LIU Hailin, and CHEN Lei. Multi-objective multi-tasking optimization algorithm based on adjustment of covariance matrix[J]. Computer Engineering, 2022, 48(8): 306–312. doi: 10.19678/j.issn.1000-3428.0062365.
|
[125] |
ZHOU Lei, FENG Liang, ZHONG Jinghui, et al. A study of similarity measure between tasks for multifactorial evolutionary algorithm[C]. The Genetic and Evolutionary Computation Conference Companion, Kyoto, Japan, 2018: 229–230. doi: 10.1145/3205651.3205736.
|
[126] |
GUPTA A, ONG Y S, DA B, et al. Landscape synergy in evolutionary multitasking[C]. The IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2016: 3076–3083. doi: 10.1109/CEC.2016.7744178.
|
[127] |
SHANG Qingxia, ZHANG Liangjie, FENG Liang, et al. A preliminary study of adaptive task selection in explicit evolutionary many-tasking[C]. IEEE Congress on Evolutionary Computation, Wellington, New Zealand, 2019: 2153–2159. doi: 10.1109/CEC.2019.8789909.
|
[128] |
HUANG Shijia, ZHONG Jinghui, and YU Weijie. Surrogate-assisted evolutionary framework with adaptive knowledge transfer for multi-task optimization[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(4): 1930–1944. doi: 10.1109/TETC.2019.2945775.
|
[129] |
ZHANG Jun, ZHOU Weien, CHEN Xianqi, et al. Multisource selective transfer framework in multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(3): 424–438. doi: 10.1109/TEVC.2019.2926107.
|
[130] |
TANG Jing, CHEN Yingke, DENG Zixuan, et al. A group-based approach to improve multifactorial evolutionary algorithm[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 3870–3876. doi: 10.5555/3304222.3304307.
|
[131] |
DA Bingshui, GUPTA A, and ONG Y S. Curbing negative influences online for seamless transfer evolutionary optimization[J]. IEEE Transactions on Cybernetics, 2019, 49(12): 4365–4378. doi: 10.1109/TCYB.2018.2864345.
|
[132] |
MIN A T W, ONG Y S, GUPTA A, et al. Multiproblem surrogates: Transfer evolutionary multiobjective optimization of computationally expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 15–28. doi: 10.1109/TEVC.2017.2783441.
|
[133] |
LIAW R T and TING C K. Evolutionary manytasking optimization based on symbiosis in biocoenosis[C]. The AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 4295–4303. doi: 10.1609/aaai.v33i01.33014295.
|
[134] |
DING Jinliang, YANG Cuie, JIN Yaochu, et al. Generalized multitasking for evolutionary optimization of expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 44–58. doi: 10.1109/TEVC.2017.2785351.
|
[135] |
LIANG Zhengping, ZHANG Jian, FENG Liang, et al. A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking[J]. Expert Systems with Applications, 2019, 138: 112798. doi: 10.1016/j.eswa.2019.07.015.
|
[136] |
BALI K K, GUPTA A, FENG Liang, et al. Linearized domain adaptation in evolutionary multitasking[C]. The IEEE Congress on Evolutionary Computation, Donostia, Spain, 2017: 1295–1302. doi: 10.1109/CEC.2017.7969454.
|
[137] |
LIM R, GUPTA A, ONG Y S, et al. Non-linear domain adaptation in transfer evolutionary optimization[J]. Cognitive Computation, 2021, 13(2): 290–307. doi: 10.1007/s12559-020-09777-7.
|
[138] |
XUE Xiaoming, ZHANG Kai, TAN K C, et al. Affine transformation-enhanced multifactorial optimization for heterogeneous problems[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6217–6231. doi: 10.1109/TCYB.2020.3036393.
|
[139] |
HUBENKO V P, RAINES R A, MILLS R F, et al. Improving the global information grid’s performance through satellite communications layer enhancements[J]. IEEE Communications Magazine, 2006, 44(11): 66–72. doi: 10.1109/MCOM.2006.248167.
|
[140] |
刘明骞, 高晓腾, 李明, 等. 空地协同场景下通信干扰智能识别方法[J]. 电子与信息学报, 2022, 44(3): 825–834. doi: 10.11999/JEIT211260.
LIU Mingqian, GAO Xiaoteng, LI Ming, et al. Communication interference intelligent recognition in the air-to-ground collaboration scenario[J]. Journal of Electronics & Information Technology, 2022, 44(3): 825–834. doi: 10.11999/JEIT211260.
|
[141] |
LYU Feng, YANG Ping, WU Huaqing, et al. Service-oriented dynamic resource slicing and optimization for space-air-ground integrated vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7469–7483. doi: 10.1109/TITS.2021.3070542.
|
[142] |
WANG Guangchao, ZHOU Sheng, NIU Zhisheng, et al. Service function chain planning with resource balancing in space-air-ground integrated networks[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013557.
|
[143] |
KREUTZ D, RAMOS F M V, VERÍSSIMO P E, et al. Software-defined networking: A comprehensive survey[J]. Proceedings of the IEEE, 2015, 103(1): 14–76. doi: 10.1109/JPROC.2014.2371999.
|
[144] |
DE JESUS GIL HERRERA J and VEGA J F B. Network functions virtualization: A survey[J]. IEEE Latin America Transactions, 2016, 14(2): 983–997. doi: 10.1109/TLA.2016.7437249.
|
[145] |
PROMWONGSA N, EBRAHIMZADEH A, GLITHO R H, et al. Joint VNF placement and scheduling for latency-sensitive services[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(4): 2432–2449. doi: 10.1109/TNSE.2022.3163927.
|
[146] |
OLADEJO S O and FALOWO O E. 5G network slicing: A multi-tenancy scenario[C]. 2017 Global Wireless Summit (GWS), Cape Town, South Africa, 2017: 88–92. doi: 10.1109/GWS.2017.8300476.
|
[147] |
付书航, 周笛, 盛敏, 等. 空天地海一体化网络体系架构与网络切片技术[J]. 移动通信, 2021, 45(5): 8–14. doi: 10.3969/j.issn.1006-1010.2021.05.002.
FU Shuhang, ZHOU Di, SHENG Min, et al. An architecture and network slicing technology in space-air-ground-sea integrated network[J]. Mobile Communications, 2021, 45(5): 8–14. doi: 10.3969/j.issn.1006-1010.2021.05.002.
|
[148] |
DAI Hongning, WU Yulei, IMRAN M, et al. Integration of blockchain and network softwarization for space-air-ground-sea integrated networks[J]. IEEE Internet of Things Magazine, 2022, 5(1): 166–172. doi: 10.1109/IOTM.004.2100098.
|
[149] |
李克强, 李家文, 常雪阳, 等. 智能网联汽车云控系统原理及其典型应用[J]. 汽车安全与节能学报, 2020, 11(3): 261–275. doi: 10.3969/j.issn.1674-8484.2020.03.001.
LI Keqiang, LI Jiawen, CHANG Xueyang, et al. Principles and typical applications of cloud control system for intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2020, 11(3): 261–275. doi: 10.3969/j.issn.1674-8484.2020.03.001.
|
[150] |
CAI Kunhai, TIAN Yanling, LIU Xianping, et al. Modeling and controller design of a 6-DOF precision positioning system[J]. Mechanical Systems and Signal Processing, 2018, 104: 536–555. doi: 10.1016/j.ymssp.2017.11.002.
|
[151] |
何欣枫, 田俊峰, 娄健. 面向边缘计算的可信协同框架[J]. 电子与信息学报, 2022, 44(12): 4256–4264. doi: 10.11999/JEIT211045.
HE Xinfeng, TIAN Junfeng, and LOU Jian. Collaborative trustworthy framework for edge computing[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4256–4264. doi: 10.11999/JEIT211045.
|
[152] |
张红霞, 吕智豪, 席诗语, 等. 面向绿色计算的车辆协同任务卸载方法[J]. 电子与信息学报, 2024, 46(1): 175–183. doi: 10.11999/JEIT230051.
ZHANG Hongxia, LÜ Zhihao, XI Shiyu, et al. A method for offloading vehicle collaborative tasks for green computing[J]. Journal of Electronics & Information Technology, 2024, 46(1): 175–183. doi: 10.11999/JEIT230051.
|
[153] |
王练, 闫润搏, 徐静. 车载边缘计算中多任务部分卸载方案研究[J]. 电子与信息学报, 2023, 45(3): 1094–1101. doi: 10.11999/JEIT211620.
WANG Lian, YAN Runbo, and XU Jing. Research on multi-task partial offloading scheme in vehicular edge computing[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1094–1101. doi: 10.11999/JEIT211620.
|
[154] |
邵苏杰, 柴睿均, 郭少勇, 等. 基于位置预测的智慧公路边缘任务协同机制[J]. 电子与信息学报, 2023, 45(4): 1154–1162. doi: 10.11999/JEIT220279.
SHAO Sujie, CHAI Ruijun, GUO Shaoyong, et al. A collaborative mechanism for smart highway edge tasks based on location prediction[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1154–1162. doi: 10.11999/JEIT220279.
|
[155] |
TONG Liang, LI Yong, and GAO Wei. A hierarchical edge cloud architecture for mobile computing[C]. IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. doi: 10.1109/INFOCOM.2016.7524340.
|
[156] |
董裕民, 张静, 谢昌佐, 等. 云边端架构下边缘智能计算关键问题综述: 计算优化与计算卸载[J]. 电子与信息学报, 2024, 46(3): 765–776. doi: 10.11999/JEIT230390.
DONG Yumin, ZHANG Jing, XIE Changzuo, et al. A survey of key issues in edge intelligent computing under cloud-edge-terminal architecture: Computing optimization and computing offloading[J]. Journal of Electronics & Information Technology, 2024, 46(3): 765–776. doi: 10.11999/JEIT230390.
|
[157] |
周天清, 曾新亮, 胡海琴. 基于混合粒子群算法的计算卸载成本优化[J]. 电子与信息学报, 2022, 44(9): 3065–3074. doi: 10.11999/JEIT211390.
ZHOU Tianqing, ZENG Xinliang, and HU Haiqin. Computation offloading cost optimization based on hybrid particle swarm optimization algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3065–3074. doi: 10.11999/JEIT211390.
|
[158] |
TULI S, MAHMUD R, TULI S, et al. Fogbus: A blockchain-based lightweight framework for edge and fog computing[J]. Journal of Systems and Software, 2019, 154: 22–36. doi: 10.1016/j.jss.2019.04.050.
|
[159] |
LI Meng, ZHU Liehuang, and LIN Xiaodong. Efficient and privacy-preserving carpooling using blockchain-assisted vehicular fog computing[J]. IEEE Internet of Things Journal, 2019, 6(3): 4573–4584. doi: 10.1109/JIOT.2018.2868076.
|
[160] |
麦伟杰, 刘伟莉, 钟竞辉. 基于机器学习的演化多任务优化框架[J]. 计算机学报, 2024, 47(1): 29–51. doi: 10.11897/SP.J.1016.2024.00029.
MAI Weijie, LIU Weili, and ZHONG Jinghui. Evolutionary many-task optimization framework based on machine learning[J]. Chinese Journal of Computers, 2024, 47(1): 29–51. doi: 10.11897/SP.J.1016.2024.00029.
|
[161] |
胡智勇, 于千城, 王之赐, 等. 基于多目标优化的联邦学习进化算法[J]. 计算机应用研究, 2024, 41(2): 415–420,437. doi: 10.19734/j.issn.1001-3695.2023.05.0235.
HU Zhiyong, YU Qiancheng, WANG Zhici, et al. Federated learning evolutionary algorithm based on multi-objective optimization[J]. Application Research of Computers, 2024, 41(2): 415–420,437. doi: 10.19734/j.issn.1001-3695.2023.05.0235.
|