Citation: | CAI Ziwei, SHENG Min, LIU Junyu, ZHAO Chenxi, LI Jiandong. Low-power Communication and Control Joint Optimization for Service Continuity Assurance in Aerial-Ground Integrated Networks[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1920-1930. doi: 10.11999/JEIT231192 |
[1] |
LYU Jiangbin, ZENG Yong, and ZHANG Rui. UAV-aided offloading for cellular hotspot[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3988–4001. doi: 10.1109/TWC.2018.2818734.
|
[2] |
MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334–2360. doi: 10.1109/COMST.2019.2902862.
|
[3] |
JIANG Xu, SHENG Min, ZHAO Nan, et al. Green UAV communications for 6G: A survey[J]. Chinese Journal of Aeronautics, 2022, 35(9): 19–34. doi: 10.1016/j.cja.2021.04.025.
|
[4] |
LI Yang, ZHANG Heli, JI Hong, et al. UAV-assisted cellular communication: Joint trajectory and coverage optimization[C]. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 2021: 1–6. doi: 10.1109/WCNC49053.2021.9417264.
|
[5] |
NGUYEN M D, LE L B, and GIRARD A. Integrated UAV trajectory control and resource allocation for UAV-based wireless networks with Co-channel interference management[J]. IEEE Internet of Things Journal, 2022, 9(14): 12754–12769. doi: 10.1109/JIOT.2021.3138374.
|
[6] |
ZHOU Shiyang, CHENG Yufang, LEI Xia, et al. Resource allocation in UAV-assisted networks: A clustering-aided reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 12088–12103. doi: 10.1109/TVT.2022.3189552.
|
[7] |
XIE Ziwen, LIU Junyu, SHENG Min, et al. Exploiting aerial computing for air-to-ground coverage enhancement[J]. IEEE Wireless Communications, 2021, 28(5): 50–58. doi: 10.1109/MWC.211.2100048.
|
[8] |
LI Jiandong, ZHOU Chengyi, LIU Junyu, et al. Reinforcement learning based resource allocation for coverage continuity in high dynamic UAV communication networks[J]. IEEE Transactions on Wireless Communications, 2023. doi: 10.1109/TWC.2023.3282909.
|
[9] |
ZENG Yong and ZHANG Rui. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747–3760. doi: 10.1109/TWC.2017.2688328.
|
[10] |
ZENG Fanzi, HU Zhenzhen, XIAO Zhu, et al. Resource allocation and trajectory optimization for QoE provisioning in energy-efficient UAV-enabled wireless networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7634–7647. doi: 10.1109/TVT.2020.2986776.
|
[11] |
LI Yabo, ZHANG Haijun, LONG Keping, et al. Joint resource allocation and trajectory optimization with QoS in NOMA UAV networks[C]. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–5. doi: 10.1109/GLOBECOM42002.2020.9322351.
|
[12] |
CUI Yuling, DENG Danhao, WANG Chaowei, et al. Joint trajectory and power optimization for energy efficient UAV communication using deep reinforcement learning[C]. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, Canada, 2021: 1–6. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484490.
|
[13] |
LIU C H, CHEN Zheyu, TANG Jian, et al. Energy-efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2059–2070. doi: 10.1109/JSAC.2018.2864373.
|
[14] |
ARANI A H, AZARI M M, HU Peng, et al. Reinforcement learning for energy-efficient trajectory design of UAVs[J]. IEEE Internet of Things Journal, 2022, 9(11): 9060–9070. doi: 10.1109/JIOT.2021.3118322.
|
[15] |
GALKIN B, OMONIWA B, and DUSPARIC I. Multi-agent deep reinforcement learning for optimising energy efficiency of fixed-wing UAV cellular access points[C]. ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, 2022: 1–6. doi: 10.1109/ICC45855.2022.9838809.
|
[16] |
KAKARLA N B and MAHENDRAN V. Lyapunov meets thompson: Learning-based energy-efficient UAV communication with queuing stability constraints[C]. IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hoboken, USA, 2023: 1–7. doi: 10.1109/INFOCOMWKSHPS57453.2023.10225765.
|
[17] |
SUN Yan, XU Dongfang, NG D W K, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019, 67(6): 4281–4298. doi: 10.1109/TCOMM.2019.2900630.
|
[18] |
WANG Ningyuan, LI Feng, CHEN Dong, et al. NOMA-based energy-efficiency optimization for UAV enabled space-air-ground integrated relay networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4129–4141. doi: 10.1109/TVT.2022.3151369.
|
[19] |
LUONG P, GAGNON F, TRAN L N, et al. Deep reinforcement learning-based resource allocation in cooperative UAV-assisted wireless networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7610–7625. doi: 10.1109/TWC.2021.3086503.
|
[20] |
DE SENA A S, LIMA F R M, DA COSTA D B, et al. Massive MIMO-NOMA networks with imperfect SIC: Design and fairness enhancement[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 6100–6115. doi: 10.1109/TWC.2020.3000192.
|
[21] |
FIORANI M, TOMBAZ S, FARIAS F S, et al. Joint design of radio and transport for green residential access networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 812–822. doi: 10.1109/JSAC.2016.2544599.
|
[22] |
WEI Xizixiang and SHEN Cong. Federated learning over noisy channels: Convergence analysis and design examples[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(2): 1253–1268. doi: 10.1109/TCCN.2022.3140788.
|