Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
YANG Jun, ZHANG Siyang, WU Yan. Correspondence Calculation of Non-isometric 3D Point Shapes Based on Smooth Attention and Spectral Up-sampling Refinement[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3285-3294. doi: 10.11999/JEIT231180
Citation: YANG Jun, ZHANG Siyang, WU Yan. Correspondence Calculation of Non-isometric 3D Point Shapes Based on Smooth Attention and Spectral Up-sampling Refinement[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3285-3294. doi: 10.11999/JEIT231180

Correspondence Calculation of Non-isometric 3D Point Shapes Based on Smooth Attention and Spectral Up-sampling Refinement

doi: 10.11999/JEIT231180 cstr: 32379.14.JEIT231180
Funds:  The National Natural Science Foundation of China(42261067)
  • Received Date: 2023-10-30
  • Rev Recd Date: 2024-07-10
  • Available Online: 2024-07-29
  • Publish Date: 2024-08-30
  • To address the problem that the correspondence calculation of non-isometric 3D point cloud shape is easily affected by large-scale distortions, which often leads to corresponding distortions, low accuracy, and poor smoothness, a new algorithm of shape correspondence calculation for non-isometric 3D point cloud is proposed, which combines smooth attention with spectral up-sampling refinement. Firstly, a smooth attention mechanism and a smooth perception module are designed using the geometric feature information of the surface on which the points are located to improve the perception ability of the features for non-rigid transformations in large-scale deformation areas. Secondly, the deep functional maps module is combined with smooth regularization constraints to improve the smoothness of the functional maps calculation results. Finally, the final point-by-point mapping result is obtained using a multi-resolution reconstruction method in the spectral up-sampling refinement module. Experimental results show that the proposed algorithm has the smallest geodesic error in the correspondence constructed on the FAUST, SCAPE, and SMAL datasets compared with existing algorithms. It can improve the smoothness and global accuracy of point-by-point mapping for shapes with large-scale deformation.
  • loading
  • [1]
    DENG Bailin, YAO Yuxin, DYKE R M, et al. A survey of non-rigid 3D registration[J]. Computer Graphics Forum, 2022, 41(2): 559–589. doi: 10.1111/cgf.14502.
    [2]
    OVSJANIKOV M, BEN-CHEN M, SOLOMON J, et al. Functional maps: A flexible representation of maps between shapes[J]. ACM Transactions on Graphics (TOG), 2012, 31(4): 30. doi: 10.1145/2185520.2185526.
    [3]
    WU Yan, YANG Jun, and ZHAO Jinlong. Partial 3D shape functional correspondence via fully spectral eigenvalue alignment and upsampling refinement[J]. Computers & Graphics, 2020, 92: 99–113. doi: 10.1016/j.cag.2020.09.004.
    [4]
    LITANY O, REMEZ T, RODOLÀ E, et al. Deep functional maps: Structured prediction for dense shape correspondence[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5660–5668. doi: 10.1109/ICCV.2017.603.
    [5]
    TOMBARI F, SALTI S, and DI STEFANO L. Unique signatures of histograms for local surface description[C]. The 11th European Conference on Computer Vision, Heraklion, Greece, 2010: 356–369. doi: 10.1007/978-3-642-15558-1_26.
    [6]
    ROUFOSSE J M, SHARMA A, and OVSJANIKOV M. Unsupervised deep learning for structured shape matching[C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1617–1627. doi: 10.1109/ICCV.2019.00170.
    [7]
    MARIN R, RAKOTOSAONA M J, MELZI S, et al. Correspondence learning via linearly-invariant embedding[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 136.
    [8]
    ATTAIKI S, PAI G, and OVSJANIKOV M. DPFM: Deep partial functional maps[C]. The 2021 International Conference on 3D Vision, London, United Kingdom, 2021: 175–185. doi: 10.1109/3DV53792.2021.00040.
    [9]
    DONATI N, CORMAN E, and OVSJANIKOV M. Deep orientation-aware functional maps: Tackling symmetry issues in shape matching[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 732–741. doi: 10.1109/CVPR52688.2022.00082.
    [10]
    管焱然, 奥利弗·范凯克, 管有庆. 基于重心映射的三角形网格参数化方法研究与实现[J]. 北京邮电大学学报, 2019, 42(5): 83–90. doi: 10.13190/j.jbupt.2018-266.

    GUAN Yanran, VAN KAICK O, and GUAN Youqing. Research and implementation of triangle mesh parameterization method based on barycentric mapping[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(5): 83–90. doi: 10.13190/j.jbupt.2018-266.
    [11]
    DONATI N, SHARMA A, and OVSJANIKOV M. Deep geometric functional maps: Robust feature learning for shape correspondence[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8589–8598. doi: 10.1109/CVPR42600.2020.00862.
    [12]
    EYNARD D, RODOLÀ E, GLASHOFF K, et al. Coupled functional maps[C]. The 2016 Fourth International Conference on 3D Vision, Stanford, USA, 2016: 399–407. doi: 10.1109/3DV.2016.49.
    [13]
    PINKALL U and POLTHIER K. Computing discrete minimal surfaces and their conjugates[J]. Experimental Mathematics, 1993, 2(1): 15–36. doi: 10.1080/10586458.1993.10504266.
    [14]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [15]
    SHARP N, ATTAIKI S, CRANE K, et al. DiffusionNet: Discretization agnostic learning on surfaces[J]. ACM Transactions on Graphics (TOG), 2022, 41(3): 27. doi: 10.1145/3507905.
    [16]
    MELZI S, REN Jing, RODOLÀ E, et al. ZoomOut: Spectral upsampling for efficient shape correspondence[J]. ACM Transactions on Graphics (TOG), 2019, 38(6): 155. doi: 10.1145/3355089.3356524.
    [17]
    BOGO F, ROMERO J, LOPER M, et al. FAUST: Dataset and evaluation for 3D mesh registration[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3794–3801. doi: 10.1109/CVPR.2014.491.
    [18]
    ANGUELOV D, SRINIVASAN P, KOLLER D, et al. SCAPE: Shape completion and animation of people[C]. ACM SIGGRAPH 2005 Papers, Los Angeles, USA, 2005: 408–416. doi: 10.1145/1186822.1073207.
    [19]
    ZUFFI S, KANAZAWA A, JACOBS D W, et al. 3D menagerie: Modeling the 3D shape and pose of animals[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5524–5532. doi: 10.1109/CVPR.2017.586.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (96) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return